Suppr超能文献

促进增殖信号通路中默林-Rac拮抗作用的形态学调控

Morphological control of merlin-Rac antagonism in proliferation-promoting signaling.

作者信息

Weiss Byron G, Keth Justine M, Bhatt Kushal, Doyal Meghan, Hahn Klaus M, Noh Jungsik, Isogai Tadamoto, Danuser Gaudenz

机构信息

Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Cecil H. and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Sci Signal. 2025 May 20;18(887):eadk0922. doi: 10.1126/scisignal.adk0922.

Abstract

The extension of lamellipodia, which are thin, fanlike projections at the cell periphery, requires the assembly of branched actin networks under the control of the small GTPase Rac1. In melanoma, a hyperactive P29S Rac1 mutant is associated with resistance to inhibitors that target the kinases BRAF and MAPK and with more aggressive disease because it sequesters and inactivates the tumor suppressor merlin (encoded by ) inside abnormally large lamellipodia. Here, we investigated how these merlin-inactivating lamellipodia are maintained using quantitative, live cell imaging of cell morphology and signaling dynamics. We showed that Rac1 and merlin activity were regulated in spatially confined regions or microdomains within the lamellipodium. The role of merlin as a proliferation-limiting tumor suppressor required its ability to inhibit lamellipodial extension and to locally inhibit Rac1 signaling. Conversely, local inactivation of merlin in lamellipodia released these restraints on morphology and signaling, leading to enhanced proliferation. Merlin and Rac1 are thus in a morphologically and dynamically regulated double-negative feedback loop, a signaling motif that can amplify and stabilize modest stimuli of lamellipodia extensions that enable melanoma to sustain mitogenic signaling under growth challenge. This represents an example of how acute oncogenicity is promoted by collaborations between cell morphological programs and biochemical signaling.

摘要

板状伪足是细胞周边薄的、扇形的突起,其延伸需要在小GTP酶Rac1的控制下组装分支状肌动蛋白网络。在黑色素瘤中,一种过度活跃的P29S Rac1突变体与对靶向激酶BRAF和MAPK的抑制剂产生抗性以及更具侵袭性的疾病相关,因为它在异常大的板状伪足内隔离并使肿瘤抑制因子默林(由编码)失活。在这里,我们使用细胞形态和信号动力学的定量活细胞成像研究了这些使默林失活的板状伪足是如何维持的。我们发现,Rac1和默林的活性在板状伪足内空间受限的区域或微结构域中受到调节。默林作为一种限制增殖的肿瘤抑制因子,其作用需要它能够抑制板状伪足的延伸并局部抑制Rac1信号传导。相反,板状伪足中默林的局部失活解除了对形态和信号传导的这些限制,导致增殖增强。因此,默林和Rac1处于形态和动态调节的双负反馈回路中,这是一种信号基序,可以放大和稳定适度的板状伪足延伸刺激,使黑色素瘤在生长挑战下维持有丝分裂信号传导。这代表了细胞形态程序和生化信号之间的合作如何促进急性致癌性的一个例子。

相似文献

1
Morphological control of merlin-Rac antagonism in proliferation-promoting signaling.
Sci Signal. 2025 May 20;18(887):eadk0922. doi: 10.1126/scisignal.adk0922.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
8
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).
Cochrane Database Syst Rev. 2018 Jul 12;7(7):CD012556. doi: 10.1002/14651858.CD012556.pub2.

本文引用的文献

1
From WRC to Arp2/3: Collective molecular mechanisms of branched actin network assembly.
Curr Opin Cell Biol. 2023 Feb;80:102156. doi: 10.1016/j.ceb.2023.102156. Epub 2023 Mar 1.
2
Blebs promote cell survival by assembling oncogenic signalling hubs.
Nature. 2023 Mar;615(7952):517-525. doi: 10.1038/s41586-023-05758-6. Epub 2023 Mar 1.
3
Fine-grained, nonlinear registration of live cell movies reveals spatiotemporal organization of diffuse molecular processes.
PLoS Comput Biol. 2022 Dec 30;18(12):e1009667. doi: 10.1371/journal.pcbi.1009667. eCollection 2022 Dec.
4
A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration.
Dev Cell. 2022 Oct 10;57(19):2290-2304.e7. doi: 10.1016/j.devcel.2022.09.003. Epub 2022 Sep 28.
5
Granger-causal inference of the lamellipodial actin regulator hierarchy by live cell imaging without perturbation.
Cell Syst. 2022 Jun 15;13(6):471-487.e8. doi: 10.1016/j.cels.2022.05.003. Epub 2022 Jun 7.
6
Local temporal Rac1-GTP nadirs and peaks restrict cell protrusions and retractions.
Sci Adv. 2022 Mar 25;8(12):eabl3667. doi: 10.1126/sciadv.abl3667. Epub 2022 Mar 23.
7
Correcting Artifacts in Ratiometric Biosensor Imaging; an Improved Approach for Dividing Noisy Signals.
Front Cell Dev Biol. 2021 Aug 20;9:685825. doi: 10.3389/fcell.2021.685825. eCollection 2021.
8
The interplay of Rac1 activity, ubiquitination and GDI binding and its consequences for endothelial cell spreading.
PLoS One. 2021 Jul 12;16(7):e0254386. doi: 10.1371/journal.pone.0254386. eCollection 2021.
9
The principles of directed cell migration.
Nat Rev Mol Cell Biol. 2021 Aug;22(8):529-547. doi: 10.1038/s41580-021-00366-6. Epub 2021 May 14.
10
Actin-Membrane Release Initiates Cell Protrusions.
Dev Cell. 2020 Dec 21;55(6):723-736.e8. doi: 10.1016/j.devcel.2020.11.024. Epub 2020 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验