Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Cell Syst. 2022 Jun 15;13(6):471-487.e8. doi: 10.1016/j.cels.2022.05.003. Epub 2022 Jun 7.
Many cell regulatory systems implicate nonlinearity and redundancy among components. The regulatory network governing lamellipodial and lamellar actin structures is prototypical of such a system, containing tens of actin-nucleating and -modulating molecules with functional overlap and feedback loops. Due to instantaneous and long-term compensation, phenotyping the system response to perturbation provides limited information on the roles the targeted component plays in the unperturbed system. Accordingly, how individual actin regulators contribute to lamellipodial dynamics remains ambiguous. Here, we present a perturbation-free reconstruction of cause-effect relations among actin regulators by applying Granger-causal inference to constitutive image fluctuations that indicate regulator recruitment as a proxy for activity. Our analysis identifies distinct zones of actin regulator activation and of causal effects on filament assembly and delineates actin-dependent and actin-independent regulator roles in controlling edge motion. We propose that edge motion is driven by assembly of two independently operating actin filament systems.
许多细胞调控系统涉及到成分之间的非线性和冗余。调控片状伪足和片状肌动蛋白结构的调控网络就是这样一个系统的典型范例,其中包含数十种具有功能重叠和反馈回路的肌动蛋白成核和调节分子。由于瞬时和长期补偿,表型系统对扰动的响应提供了有限的信息,说明目标成分在未受干扰的系统中所起的作用。因此,单个肌动蛋白调节剂如何有助于片状伪足动力学仍然不清楚。在这里,我们通过将格兰杰因果推断应用于指示调节剂募集的组成性图像波动,来重建肌动蛋白调节剂之间因果关系,而无需进行扰动,以此作为活性的替代指标。我们的分析确定了肌动蛋白调节剂激活的不同区域以及对纤维组装的因果效应,并描绘了在控制边缘运动中肌动蛋白依赖性和肌动蛋白非依赖性调节剂的作用。我们提出边缘运动是由两个独立运作的肌动蛋白丝系统的组装驱动的。