Garro Florencia, Fenoglio Elena, Ceroni Indya, Forsiuk Inna, Canepa Michele, Mozzon Michael, Bruschi Agnese, Zippo Francesco, Laffranchi Matteo, De Michieli Lorenzo, Buccelli Stefano, Chiappalone Michela, Semprini Marianna
Italian Institute of Technology, Rehab Technologies Lab, Genoa, 16163, Italy.
University of Genoa, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Genoa, 16145, Italy.
Sci Data. 2025 May 20;12(1):831. doi: 10.1038/s41597-025-05042-4.
This work describes a dataset containing high-density EEG (hd-EEG) and surface electromiography (sEMG) to capture neuromechanical responses during a reaching task with and without the assistance of an upper-limb exoskeleton. It was designed to explore electrophysiological biomarkers for assessing assistive technologies. Data were collected from 40 healthy participants performing 10 repetitions of three standardized reaching tasks. A custom-designed touch panel was built to standardize and simulate natural upper-limb movements relevant to daily activities. The dataset is formatted according to the Brain Imaging Data Structure (BIDS) standard, in alignment with FAIR principles. To provide an overview of data quality, we present subject-level analyses of event-related spectral perturbation (ERSP), inter-trial coherence (ITC), and event-related synchronization/desynchronization (ERS/ERD) for EEG, along with time- and frequency- domain decomposition for EMG. Beyond providing a methodology for evaluating assistive technologies, this dataset can be used for biosignal processing research, particularly for artifact removal and denoising techniques. It is also valuable for machine learning-based feature extraction, classification, and studying neuromechanical modulations during goal-oriented movements. Additionally, it can support research on human-robot interaction in non-clinical settings, hybrid brain-computer interfaces (BCIs) for robotic control and biomechanical modeling of upper-limb movements.
这项工作描述了一个数据集,其中包含高密度脑电图(hd - EEG)和表面肌电图(sEMG),用于捕捉在有和没有上肢外骨骼辅助的伸手任务期间的神经机械反应。其旨在探索用于评估辅助技术的电生理生物标志物。数据收集自40名健康参与者,他们对三项标准化伸手任务进行了10次重复操作。构建了一个定制设计的触摸面板,以标准化和模拟与日常活动相关的自然上肢运动。该数据集按照脑成像数据结构(BIDS)标准进行格式化,符合FAIR原则。为了概述数据质量,我们展示了脑电图的事件相关频谱扰动(ERSP)、试验间相干性(ITC)和事件相关同步/去同步(ERS/ERD)的受试者水平分析,以及肌电图的时域和频域分解。除了提供一种评估辅助技术的方法外,该数据集还可用于生物信号处理研究,特别是伪迹去除和去噪技术。它对于基于机器学习的特征提取、分类以及研究目标导向运动期间的神经机械调制也很有价值。此外,它可以支持非临床环境中的人机交互研究、用于机器人控制的混合脑机接口(BCI)以及上肢运动的生物力学建模。