文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PET 影像组学特征在新诊断口腔鳞状细胞癌诊断及复发预测中的价值

Value of PET radiomic features for diagnosis and reccurence prediction of newly diagnosed oral squamous cell carcinoma.

作者信息

Pfaehler Elisabeth, Schindele Andreas, Dierks Alexander, Busse Cornelius, Brumberg Joachim, Kübler Alexander C, Buck Andreas K, Linz Christian, Lapa Constantin, Brands Roman C, Kertels Olivia

机构信息

Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.

Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, Würzburg, Germany.

出版信息

Sci Rep. 2025 May 20;15(1):17475. doi: 10.1038/s41598-025-02305-3.


DOI:10.1038/s41598-025-02305-3
PMID:40394092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12092716/
Abstract

Oral Squamous Cell Carcinoma (OSCC) represents more than 90% of oral cancers. The usefulness of radiomic features extracted from PET images of OSCC patients to predict tumor characteristics such as primary tumor stage (T-stage), or tumor grade has not been investigated yet. In this prospective study, 112 patients with newly diagnosed, treatment-naïve OSCC were included. Tumor segmentation was performed using three strategies, the majority vote of these segmentations was used to calculate 445 radiomic features. Features instable over segmentation methods and features highly correlated with volume, SUV, and SUV were eliminated. A Random Forest classifier was trained to predict T-stage, tumor grade, lymph node involvement, and tumor recurrence. Stratified 10-fold cross-validation was performed. Evaluation metrics such as accuracy and area under the curve (AUC) were reported. SHAP dependence plots were generated to understand classifier decisions. The classifier reached a mean cross-validation AUC of 0.83 for predicting T-stage, an AUC of 0.56 for the grading of the primary tumor, a mean AUC of 0.64 for lymph node involvement, and a mean AUC of 0.63 for recurrence. In patients with newly-diagnosed OSCC, radiomics might have some potential to predict T-stage. These results need to be validated in a larger patient cohort.

摘要

口腔鳞状细胞癌(OSCC)占口腔癌的90%以上。从OSCC患者的PET图像中提取的放射组学特征用于预测肿瘤特征(如原发肿瘤分期(T分期)或肿瘤分级)的有效性尚未得到研究。在这项前瞻性研究中,纳入了112例新诊断的、未接受过治疗的OSCC患者。使用三种策略进行肿瘤分割,这些分割的多数投票结果用于计算445个放射组学特征。消除了在分割方法上不稳定的特征以及与体积、SUV和SUV高度相关的特征。训练了一个随机森林分类器来预测T分期、肿瘤分级、淋巴结受累情况和肿瘤复发情况。进行了分层10折交叉验证。报告了诸如准确率和曲线下面积(AUC)等评估指标。生成了SHAP依赖图以了解分类器的决策。该分类器预测T分期的平均交叉验证AUC为0.83,原发肿瘤分级的AUC为0.56,淋巴结受累的平均AUC为0.64,复发的平均AUC为0.63。在新诊断的OSCC患者中,放射组学可能具有预测T分期的一些潜力。这些结果需要在更大的患者队列中进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/028cc98973e6/41598_2025_2305_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/7324a697848e/41598_2025_2305_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/7778df55d4f0/41598_2025_2305_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/651de551fb44/41598_2025_2305_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/a22a7ca01df1/41598_2025_2305_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/e2223bdc2e53/41598_2025_2305_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/e65f52d0fa66/41598_2025_2305_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/916ec80d41fb/41598_2025_2305_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/028cc98973e6/41598_2025_2305_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/7324a697848e/41598_2025_2305_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/7778df55d4f0/41598_2025_2305_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/651de551fb44/41598_2025_2305_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/a22a7ca01df1/41598_2025_2305_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/e2223bdc2e53/41598_2025_2305_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/e65f52d0fa66/41598_2025_2305_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/916ec80d41fb/41598_2025_2305_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0b/12092716/028cc98973e6/41598_2025_2305_Fig8_HTML.jpg

相似文献

[1]
Value of PET radiomic features for diagnosis and reccurence prediction of newly diagnosed oral squamous cell carcinoma.

Sci Rep. 2025-5-20

[2]
MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study.

Int J Surg. 2024-8-1

[3]
Development and validation of an explainable machine learning model for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma: A multi-center study.

Int J Surg. 2025-8-1

[4]
Radiomics Nomogram Based on Optimal Volume of Interest Derived from High-Resolution CT for Preoperative Prediction of IASLC Grading in Clinical IA Lung Adenocarcinomas: A Multi-Center, Large-Population Study.

Technol Cancer Res Treat. 2024

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Radiography (Lond). 2025-7

[7]
Application value of dual-sequence MRI based nomogram of radiomics and morphologic features in predicting tumor differentiation degree and lymph node metastasis of Oral squamous cell carcinoma.

Front Oncol. 2025-7-15

[8]
Stable and discriminating OCT-derived radiomics features for predicting anti-VEGF treatment response in diabetic macular edema.

Med Phys. 2025-5

[9]
Radiomics-based prediction of T cell-inflamed gene expression profile and prognosis in head and neck squamous cell carcinoma.

Med Phys. 2025-8

[10]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

本文引用的文献

[1]
Radiomic features of dynamic contrast-enhanced MRI can predict Ki-67 status in head and neck squamous cell carcinoma.

Magn Reson Imaging. 2025-2

[2]
FDG PET-CT for the Detection of Occult Nodal Metastases in Head and Neck Cancer: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2024-8-24

[3]
Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to F-FDG-PET Radiomics.

Biomedicines. 2024-6-25

[4]
Role of F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications.

Cancers (Basel). 2024-5-16

[5]
Is PET Radiomics Useful to Predict Pathologic Tumor Response and Prognosis in Locally Advanced Cervical Cancer?

J Nucl Med. 2024-6-3

[6]
Prognostic value of F-FDG PET radiomics and sarcopenia in patients with oral squamous cell carcinoma.

Med Phys. 2024-7

[7]
Identification of CT-based non-invasive radiomic biomarkers for overall survival prediction in oral cavity squamous cell carcinoma.

Sci Rep. 2023-12-8

[8]
Optimizing Clinical Decision Making with Decision Curve Analysis: Insights for Clinical Investigators.

Healthcare (Basel). 2023-8-10

[9]
The prognostic value of radiomic features from pre- and post-treatment F-FDG PET imaging in patients with nasopharyngeal carcinoma.

Sci Rep. 2023-5-25

[10]
Tumor Recurrence and Follow-Up Intervals in Oral Squamous Cell Carcinoma.

J Clin Med. 2022-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索