文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用应用于F-FDG-PET放射组学的机器学习模型预测口腔鳞状细胞癌的组织学分级

Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to F-FDG-PET Radiomics.

作者信息

Nikkuni Yutaka, Nishiyama Hideyoshi, Hayashi Takafumi

机构信息

Division of Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.

出版信息

Biomedicines. 2024 Jun 25;12(7):1411. doi: 10.3390/biomedicines12071411.


DOI:10.3390/biomedicines12071411
PMID:39061984
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11273837/
Abstract

The histological grade of oral squamous cell carcinoma affects the prognosis. In the present study, we performed a radiomics analysis to extract features from F-FDG PET image data, created machine learning models from the features, and verified the accuracy of the prediction of the histological grade of oral squamous cell carcinoma. The subjects were 191 patients in whom an F-FDG-PET examination was performed preoperatively and a histopathological grade was confirmed after surgery, and their tumor sizes were sufficient for a radiomics analysis. These patients were split in a 70%/30% ratio for use as training data and testing data, respectively. We extracted 2993 radiomics features from the PET images of each patient. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) machine learning models were created. The areas under the curve obtained from receiver operating characteristic curves for the prediction of the histological grade of oral squamous cell carcinoma were 0.72, 0.71, 0.84, 0.74, and 0.73 for LR, SVM, RF, NB, and KNN, respectively. We confirmed that a PET radiomics analysis is useful for the preoperative prediction of the histological grade of oral squamous cell carcinoma.

摘要

口腔鳞状细胞癌的组织学分级影响预后。在本研究中,我们进行了一项放射组学分析,以从F-FDG PET图像数据中提取特征,根据这些特征创建机器学习模型,并验证口腔鳞状细胞癌组织学分级预测的准确性。研究对象为191例患者,这些患者术前进行了F-FDG-PET检查,术后确认了组织病理学分级,且其肿瘤大小足以进行放射组学分析。这些患者按70%/30%的比例分别用作训练数据和测试数据。我们从每位患者的PET图像中提取了2993个放射组学特征。创建了逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、朴素贝叶斯(NB)和K近邻(KNN)机器学习模型。LR、SVM、RF、NB和KNN预测口腔鳞状细胞癌组织学分级的受试者工作特征曲线下面积分别为0.72、0.71、0.84、0.74和0.73。我们证实,PET放射组学分析有助于口腔鳞状细胞癌组织学分级的术前预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/bd28606f2de2/biomedicines-12-01411-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/cb85d48d1831/biomedicines-12-01411-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/449b213adcae/biomedicines-12-01411-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/4c1536900311/biomedicines-12-01411-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/bd28606f2de2/biomedicines-12-01411-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/cb85d48d1831/biomedicines-12-01411-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/449b213adcae/biomedicines-12-01411-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/4c1536900311/biomedicines-12-01411-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c3/11273837/bd28606f2de2/biomedicines-12-01411-g004.jpg

相似文献

[1]
Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to F-FDG-PET Radiomics.

Biomedicines. 2024-6-25

[2]
Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.

Front Oncol. 2024-2-23

[3]
A machine learning approach using F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors.

Front Immunol. 2024

[4]
Five machine learning-based radiomics models for preoperative prediction of histological grade in hepatocellular carcinoma.

J Cancer Res Clin Oncol. 2023-11

[5]
Preliminary study on the ability of the machine learning models based on F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma.

Eur J Radiol. 2024-7

[6]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[7]
Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.

BMC Cancer. 2024-4-5

[8]
Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using F-FDG PET Images.

Diagnostics (Basel). 2021-6-7

[9]
A Machine Learning Approach Using [F]FDG PET-Based Radiomics for Prediction of Tumor Grade and Prognosis in Pancreatic Neuroendocrine Tumor.

Mol Imaging Biol. 2023-10

[10]
Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.

Biomed Phys Eng Express. 2023-12-20

引用本文的文献

[1]
Value of PET radiomic features for diagnosis and reccurence prediction of newly diagnosed oral squamous cell carcinoma.

Sci Rep. 2025-5-20

[2]
Radiomics-based classification of medication-related osteonecrosis of the jaw using panoramic radiographs.

Oral Radiol. 2025-5-5

[3]
Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications.

Diagnostics (Basel). 2025-1-24

本文引用的文献

[1]
Predicting Histologic Grade of Meningiomas Using a Combined Model of Radiomic and Clinical Imaging Features from Preoperative MRI.

Biomedicines. 2023-12-10

[2]
Controversies in the treatment of early-stage oral squamous cell carcinoma.

Curr Probl Cancer. 2024-2

[3]
Contribution of FDG-PET in the diagnostic assessment of cervical lymph node metastasis in Oral Cavity Squamous Cell Carcinoma (OCSCC).

J Stomatol Oral Maxillofac Surg. 2023-12

[4]
Radiomics analysis of intraoral ultrasound images for prediction of late cervical lymph node metastasis in patients with tongue cancer.

Head Neck. 2023-10

[5]
Volume-based 18F-fluorodeoxyglucose positron emission tomography/computed tomography parameters correlate with delayed neck metastasis in clinical early-stage oral squamous cell carcinoma.

Oral Radiol. 2023-10

[6]
Characterization of Mediastinal Bulky Lymphomas with FDG-PET-Based Radiomics and Machine Learning Techniques.

Cancers (Basel). 2023-3-23

[7]
Determination of diagnostic and predictive parameters for vertical mandibular invasion in patients with lower gingival squamous cell carcinoma: A retrospective study.

Medicine (Baltimore). 2022-12-9

[8]
A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma.

Acad Radiol. 2023-8

[9]
Impact of histological tumor grade on the behavior and prognosis of squamous cell carcinoma of the oral cavity.

J Stomatol Oral Maxillofac Surg. 2022-11

[10]
Neoadjuvant Superselective Intra-Arterial Cisplatin Chemoradiotherapy Combined With Surgery in Patients With T4 Squamous Cell Carcinoma of the Maxillary Sinus.

J Oral Maxillofac Surg. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索