Heo Gyujin, Xu Ying, Wang Erming, Ali Muhammad, Oh Hamilton Se-Hwee, Moran-Losada Patricia, Anastasi Federica, González Escalante Armand, Puerta Raquel, Song Soomin, Timsina Jigyasha, Liu Menghan, Western Daniel, Gong Katherine, Chen Yike, Kohlfeld Pat, Flynn Allison, Thomas Alvin G, Lowery Joseph, Morris John C, Holtzman David M, Perlmutter Joel S, Schindler Suzanne E, Vilor-Tejedor Natalia, Suárez-Calvet Marc, García-González Pablo, Marquié Marta, Fernández Maria Victoria, Boada Mercè, Cano Amanda, Ruiz Agustín, Zhang Bin, Bennett David A, Benzinger Tammie, Wyss-Coray Tony, Ibanez Laura, Sung Yun Ju, Cruchaga Carlos
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA.
Nat Aging. 2025 May 20. doi: 10.1038/s43587-025-00872-8.
Proteomic studies have been instrumental in identifying brain, cerebrospinal fluid and plasma proteins associated with Alzheimer's disease (AD). Here, we comprehensively examined 6,905 aptamers corresponding to 6,106 unique proteins in plasma in more than 3,300 well-characterized individuals to identify new proteins, pathways and predictive models for AD. We identified 416 proteins (294 new) associated with clinical AD status and validated the findings in two external datasets representing more than 7,000 samples. AD-related proteins reflected blood-brain barrier disruption and other processes implicated in AD, such as lipid dysregulation or immune responses. A machine learning model was used to identify a set of seven proteins that were highly predictive of both clinical AD (area under the curve (AUC) of >0.72) and biomarker-defined AD status (AUC of >0.88), which were replicated in multiple external cohorts and orthogonal platforms. These findings underscore the potential of using plasma proteins as biomarkers for the early detection and monitoring of AD and for guiding treatment decisions.
蛋白质组学研究在识别与阿尔茨海默病(AD)相关的大脑、脑脊液和血浆蛋白方面发挥了重要作用。在此,我们全面检测了超过3300名特征明确的个体血浆中对应6106种独特蛋白质的6905个适配体,以识别AD的新蛋白质、信号通路和预测模型。我们鉴定出416种与临床AD状态相关的蛋白质(294种为新发现),并在代表超过7000个样本的两个外部数据集中验证了这些发现。AD相关蛋白反映了血脑屏障破坏以及AD涉及的其他过程,如脂质失调或免疫反应。使用机器学习模型识别出一组七种蛋白质,它们对临床AD(曲线下面积(AUC)>0.72)和生物标志物定义的AD状态(AUC>0.88)都具有高度预测性,这些结果在多个外部队列和正交平台上得到了重复验证。这些发现强调了使用血浆蛋白作为生物标志物用于AD早期检测、监测以及指导治疗决策的潜力。