Suppr超能文献

磁性增强管内固相微萃取的材料制备与应用研究进展

[Research progress in material preparation and application of magnetism-enhanced in-tube solid-phase microextraction].

作者信息

Luo Ya-Na, Chen Jia, Hu Yu-Yu, Gao Shi-Jie, Wang Yan-Li, Liu Yan-Ming, Feng Juan-Juan, Sun Min

机构信息

School of Chemistry and Chemical Engineering,University of Jinan,Jinan 250022,China.

Shandong Institute for Food and Drug Control,Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug,Jinan 250101,China.

出版信息

Se Pu. 2025 Jun;43(6):606-619. doi: 10.3724/SP.J.1123.2024.05030.

Abstract

Selecting a suitable sample preparation method is a significant step prior to chromatographic separation and detection. Directly analyzing samples instrumentally is difficult owing to the complexity of the sample matrix and the trace concentration of analytes. Most sample preparation methods have disadvantages, including complicated operating procedures, the use of large amounts of organic solvent, and ease of analyte loss during multistep processes; consequently, they do not meet the high analytical sample detection requirements of modern industry. The development of simple, environmentally friendly, efficient, and rapid preparation methods is a continuing frontier research area in the analytical chemistry field. Among the many available sample preparation techniques, in-tube solid-phase microextraction (IT-SPME) is receiving extensive attention. IT-SPME enriches the target analytes by extracting them to the inner surface of the capillary tube, and has been applied to extract various analytes in the environmental and food fields. IT-SPME is advantageous because it consumes low amounts of organic solvent and capillaries are mechanical stable; consequently, IT-SPME is a promising sample preparation technique. Magnetic field has been introduced to the IT-SPME system to further improve extraction efficiency and selectivity, leading to the development of magnetism-enhanced in-tube solid-phase microextraction (ME-IT-SPME) as a new technology. ME-IT-SPME uses magnetic field to separate and enrich targets, with different magnetic-field strengths applied to the extraction column during adsorption and elution. Diamagnetic substances in a paramagnetic medium tend to concentrate in regions where the magnetic field is weak when an external magnetic field is applied. Target analytes are detected chromatographically following elution. Conditions are optimized and an analytical method is established and used to detect targets in actual samples, leading to improved extraction sensitivity and precision compared to those obtained using IT-SPME, including shorter analysis time and superior extraction efficiency. This paper reviews the applications of ME-IT-SPME technology in combination with various analytical instruments since its inception in 2012, and analyzes its analysis and detection advantages. Based on hydrophobic interactions, hydrogen bonding, - and polarity interactions, coordination, and other extraction mechanisms with analytes, ME-IT-SPME uses innovative functional extraction materials, including nanomaterials, monolithic materials, and magnetic hybrid materials, all of which have high surface areas and numerous adsorption sites. Capillary microextraction columns are prepared using open-tubular capillary, particle-filling capillary, or monolithic capillaries. Diverse analytes are detected when ME-IT-SPME is combined with chromatograph, including organic pesticide residues, heavy-metal ions, herbicides, preservatives, and drug molecules. ME-IT-SPME technology is widely used in the environmental-analysis, food-analysis, and biomedical fields. Future, ME-IT-SPME technological developments should include: (1) focus on the reusability and stability of the magnetic extraction material; (2) discovering new extraction materials that are highly enriching and selective in order to analyze a greater variety of targets; (3) further innovating ME-IT-SPME technology by combining it with other more-sensitive analytical methods and considering its use in other fields; (4) connecting different capillaries to simultaneously enrich a variety of analytes; (5) exploring how the higher magnetic field influences extraction efficiency by designing new magnetic-field-regulating devices with small thermal interference; (6) combining the technology with advanced portable analytical instruments to realize real-time target analysis in the field; (7) exploiting immuno-affinitive extraction tubes that can be used to highly efficiently and selectively extract biological macromolecular drugs.

摘要

选择合适的样品制备方法是色谱分离和检测之前的重要步骤。由于样品基质的复杂性和分析物的痕量浓度,直接对样品进行仪器分析很困难。大多数样品制备方法都有缺点,包括操作程序复杂、使用大量有机溶剂以及在多步过程中分析物容易损失;因此,它们不符合现代工业对高分析样品检测的要求。开发简单、环保、高效和快速的制备方法是分析化学领域一个持续的前沿研究领域。在众多可用的样品制备技术中,管内固相微萃取(IT-SPME)受到广泛关注。IT-SPME通过将目标分析物萃取到毛细管内表面来富集它们,并已应用于环境和食品领域中各种分析物的萃取。IT-SPME具有优势,因为它消耗的有机溶剂量少,并且毛细管具有机械稳定性;因此,IT-SPME是一种很有前景的样品制备技术。磁场已被引入到IT-SPME系统中以进一步提高萃取效率和选择性,从而催生了磁增强管内固相微萃取(ME-IT-SPME)这一新技术。ME-IT-SPME利用磁场分离和富集目标物,在吸附和洗脱过程中对萃取柱施加不同的磁场强度。当施加外部磁场时,顺磁介质中的抗磁性物质倾向于集中在磁场较弱的区域。洗脱后通过色谱法检测目标分析物。优化条件并建立分析方法,用于检测实际样品中的目标物,与使用IT-SPME相比,提高了萃取灵敏度和精密度,包括更短的分析时间和更高的萃取效率。本文综述了ME-IT-SPME技术自2012年问世以来与各种分析仪器联用的应用情况,并分析了其分析和检测优势。基于与分析物的疏水相互作用、氢键、极性相互作用、配位等萃取机理,ME-IT-SPME使用创新的功能性萃取材料,包括纳米材料、整体材料和磁性杂化材料,所有这些材料都具有高表面积和众多吸附位点。使用开管毛细管、填充颗粒毛细管或整体毛细管制备毛细管微萃取柱。当ME-IT-SPME与色谱仪联用时,可以检测多种分析物,包括有机农药残留、重金属离子、除草剂、防腐剂和药物分子。ME-IT-SPME技术广泛应用于环境分析、食品分析和生物医学领域。未来,ME-IT-SPME技术的发展应包括:(1)关注磁性萃取材料的可重复使用性和稳定性;(2)发现对更多种目标物具有高富集性和选择性的新型萃取材料;(3)通过将ME-IT-SPME技术与其他更灵敏的分析方法联用并考虑其在其他领域的应用,进一步创新该技术;(4)连接不同的毛细管以同时富集多种分析物;(5)通过设计热干扰小的新型磁场调节装置,探索更高的磁场如何影响萃取效率;(6)将该技术与先进的便携式分析仪器联用,实现现场实时目标分析;(7)开发可用于高效、选择性地萃取生物大分子药物的免疫亲和萃取管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec09/12093209/d0b2d29064d8/66C609C0-D080-45e0-A619-99AA4BEE5EB9-F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验