Suppr超能文献

通过甲酸盐途径在Cu/CuPO上从CO选择性电合成甲醇。

Selective Electrosynthesis of Methanol from CO Over Cu/CuPO Via the Formate Pathway.

作者信息

Kim Hyunwoo, Lee Jihoe, Lee Sangseob, Park Suhwan, Lee Yongseok, Lee Giyeok, Jeon Hyo Sang, Han Man Ho, Jin Sunghwan, Lee Hyun-Wook, Soon Aloysius, Kim Jongsoon, Ryu Jungki

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

出版信息

Adv Mater. 2025 Sep;37(35):e2501021. doi: 10.1002/adma.202501021. Epub 2025 May 20.

Abstract

The electrochemical CO reduction reaction (CO2RR) to methanol offers an eco-friendly approach to reducing carbon emissions while producing versatile liquid fuels and feedstocks. However, achieving high selectivity for methanol, especially at high current densities, remains challenging due to competing reactions that favor methane and hydrogen formation. Here, the tailored synthesis of Cu/CuPO-based hybrid catalysts is reported for efficient and selective methanol production through the discharge of lithium-ion batteries. The catalyst exhibits a Faradaic efficiency exceeding 50% in both H-cells and gas-diffusion electrode cells, achieving one of the highest reported methanol partial current densities of over 100 mA cm. Experimental and computational analyses reveal a synergistic effect between Cu nanoparticles with a predominant (111) surface and CuPO nanoparticles, which enhances selective methanol production via the HCOOH intermediate pathway. These findings provide insights into designing cost-effective electrocatalysts for selective methanol production.

摘要

将电化学二氧化碳还原反应(CO2RR)转化为甲醇,为减少碳排放提供了一种环保方法,同时还能生产多种液体燃料和原料。然而,由于有利于甲烷和氢气生成的竞争反应,实现对甲醇的高选择性,尤其是在高电流密度下,仍然具有挑战性。在此,报道了通过锂离子电池放电定制合成基于Cu/CuPO的混合催化剂,用于高效、选择性地生产甲醇。该催化剂在H型电池和气体扩散电极电池中均表现出超过50%的法拉第效率,实现了超过100 mA cm的甲醇分电流密度,这是报道的最高值之一。实验和计算分析揭示了具有主要(111)表面的铜纳米颗粒与CuPO纳米颗粒之间的协同效应,该效应通过HCOOH中间途径增强了甲醇的选择性生产。这些发现为设计用于选择性甲醇生产的经济高效电催化剂提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/12411997/42c6acbe9dda/ADMA-37-2501021-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验