Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
School of Materials and Energy, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
Nat Commun. 2023 Jun 8;14(1):3382. doi: 10.1038/s41467-023-39048-6.
Electrochemical CO conversion to methane, powered by intermittent renewable electricity, provides an entrancing opportunity to both store renewable electric energy and utilize emitted CO. Copper-based single atom catalysts are promising candidates to restrain C-C coupling, suggesting feasibility in further protonation of CO* to CHO* for methane production. In theoretical studies herein, we find that introducing boron atoms into the first coordination layer of Cu-N motif facilitates the binding of CO* and CHO* intermediates, which favors the generation of methane. Accordingly, we employ a co-doping strategy to fabricate B-doped Cu-N atomic configuration (Cu-NB), where Cu-NB is resolved to be the dominant site. Compared with Cu-N motifs, as-synthesized B-doped Cu-N structure exhibits a superior performance towards methane production, showing a peak methane Faradaic efficiency of 73% at -1.46 V vs. RHE and a maximum methane partial current density of -462 mA cm at -1.94 V vs. RHE. Extensional calculations utilizing two-dimensional reaction phase diagram analysis together with barrier calculation help to gain more insights into the reaction mechanism of Cu-NB coordination structure.
电化学 CO 转化为甲烷,由间歇性可再生电力驱动,为存储可再生电能和利用排放的 CO 提供了诱人的机会。基于铜的单原子催化剂是抑制 C-C 偶联的有前途的候选者,这表明 CO进一步质子化生成 CHO以生产甲烷是可行的。在本文的理论研究中,我们发现,将硼原子引入到 Cu-N 基序的第一配位层中,有利于 CO和 CHO*中间体的结合,从而有利于甲烷的生成。因此,我们采用共掺杂策略来制备 B 掺杂的 Cu-N 原子构型(Cu-NB),其中 Cu-NB 被解析为主要位点。与 Cu-N 基序相比,合成的 B 掺杂 Cu-N 结构在甲烷生成方面表现出优异的性能,在相对于 RHE 的-1.46 V 下,甲烷法拉第效率峰值达到 73%,在相对于 RHE 的-1.94 V 下,甲烷部分电流密度达到-462 mA cm。利用二维反应相图分析和势垒计算的扩展计算有助于更深入地了解 Cu-NB 配位结构的反应机制。