Suppr超能文献

利用机器学习、卷积神经网络(CNN)和智能手机RGB图像进行预测建模,以对珍珠粟进行无损生物量估计。

Predictive modelling employing machine learning, convolutional neural networks (CNNs), and smartphone RGB images for non-destructive biomass estimation of pearl millet ().

作者信息

Dhawi Faten, Ghafoor Abdul, Almousa Norah, Ali Sakinah, Alqanbar Sara

机构信息

Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, Saudi Arabia.

Center for Water and Environmental Studies, King Faisal University, Al-Ahsa, Saudi Arabia.

出版信息

Front Plant Sci. 2025 May 6;16:1594728. doi: 10.3389/fpls.2025.1594728. eCollection 2025.

Abstract

Digital tools and non-destructive monitoring techniques are crucial for real-time evaluations of crop output and health in sustainable agriculture, particularly for precise above-ground biomass (AGB) computation in pearl millet (). This study employed a transfer learning approach using pre-trained convolutional neural networks (CNNs) alongside shallow machine learning algorithms (Support Vector Regression, XGBoost, Random Forest Regression) to estimate AGB. Smartphone-based RGB imaging was used for data collection, and Shapley additive explanations (SHAP) methodology evaluated predictor importance. The SHAP analysis identified Normalized Green-Red Difference Index (NGRDI) and plant height as the most influential features for AGB estimation. XGBoost achieved the highest accuracy (R = 0.98, RMSE = 0.26) with a comprehensive feature set, while CNN-based models also showed strong predictive ability. Random Forest Regression performed best with the two most important features, whereas Support Vector Regression was the least effective. These findings demonstrate the effectiveness of CNNs and shallow machine learning for non-invasive AGB estimation using cost-effective RGB imagery, supporting automated biomass prediction and real-time plant growth monitoring. This approach can aid small-scale carbon inventories in smallholder agricultural systems, contributing to climate-resilient strategies.

摘要

数字工具和无损监测技术对于可持续农业中作物产量和健康状况的实时评估至关重要,特别是对于珍珠粟地上生物量(AGB)的精确计算。本研究采用迁移学习方法,使用预训练的卷积神经网络(CNN)以及浅层机器学习算法(支持向量回归、极端梯度提升、随机森林回归)来估算AGB。基于智能手机的RGB成像用于数据收集,并采用夏普利值加法解释(SHAP)方法评估预测变量的重要性。SHAP分析确定归一化绿红差异指数(NGRDI)和株高是AGB估算中最具影响力的特征。极端梯度提升在综合特征集下实现了最高准确率(R = 0.98,均方根误差 = 0.26),而基于CNN的模型也显示出很强的预测能力。随机森林回归在两个最重要特征下表现最佳,而支持向量回归效果最差。这些发现证明了CNN和浅层机器学习在使用经济高效的RGB图像进行非侵入性AGB估算方面的有效性,支持自动生物量预测和实时植物生长监测。这种方法有助于小农户农业系统中的小规模碳清单编制,为气候适应战略做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5875/12089045/c37aa7dfffb9/fpls-16-1594728-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验