Suppr超能文献

通过卷积神经网络进行水稻病害检测的进展:全面综述

Advancements in rice disease detection through convolutional neural networks: A comprehensive review.

作者信息

Gülmez Burak

机构信息

Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands.

Mine Apt, Altay Mah. Sehit A. Taner Ekici Sk. No: 6, 06820, Etimesgut, Ankara, Türkiye.

出版信息

Heliyon. 2024 Jun 19;10(12):e33328. doi: 10.1016/j.heliyon.2024.e33328. eCollection 2024 Jun 30.

Abstract

This review paper addresses the critical need for advanced rice disease detection methods by integrating artificial intelligence, specifically convolutional neural networks (CNNs). Rice, being a staple food for a large part of the global population, is susceptible to various diseases that threaten food security and agricultural sustainability. This research is significant as it leverages technological advancements to tackle these challenges effectively. Drawing upon diverse datasets collected across regions including India, Bangladesh, Türkiye, China, and Pakistan, this paper offers a comprehensive analysis of global research efforts in rice disease detection using CNNs. While some rice diseases are universally prevalent, many vary significantly by growing region due to differences in climate, soil conditions, and agricultural practices. The primary objective is to explore the application of AI, particularly CNNs, for precise and early identification of rice diseases. The literature review includes a detailed examination of data sources, datasets, and preprocessing strategies, shedding light on the geographic distribution of data collection and the profiles of contributing researchers. Additionally, the review synthesizes information on various algorithms and models employed in rice disease detection, highlighting their effectiveness in addressing diverse data complexities. The paper thoroughly evaluates hyperparameter optimization techniques and their impact on model performance, emphasizing the importance of fine-tuning for optimal results. Performance metrics such as accuracy, precision, recall, and F1 score are rigorously analyzed to assess model effectiveness. Furthermore, the discussion section critically examines challenges associated with current methodologies, identifies opportunities for improvement, and outlines future research directions at the intersection of machine learning and rice disease detection. This comprehensive review, analyzing a total of 121 papers, underscores the significance of ongoing interdisciplinary research to meet evolving agricultural technology needs and enhance global food security.

摘要

这篇综述论文探讨了通过集成人工智能,特别是卷积神经网络(CNN)来开发先进水稻病害检测方法的迫切需求。水稻是全球大部分人口的主食,易受多种病害影响,这些病害威胁着粮食安全和农业可持续性。这项研究具有重要意义,因为它利用技术进步有效地应对这些挑战。本文借鉴了在印度、孟加拉国、土耳其、中国和巴基斯坦等地区收集的各种数据集,对利用CNN进行水稻病害检测的全球研究工作进行了全面分析。虽然一些水稻病害普遍存在,但由于气候、土壤条件和农业实践的差异,许多病害在不同种植地区有显著差异。主要目标是探索人工智能,特别是CNN在精确和早期识别水稻病害方面的应用。文献综述包括对数据来源、数据集和预处理策略的详细考察,揭示了数据收集的地理分布以及贡献研究人员的概况。此外,该综述综合了水稻病害检测中使用的各种算法和模型的信息,突出了它们在应对不同数据复杂性方面的有效性。本文全面评估了超参数优化技术及其对模型性能的影响,强调了微调以获得最佳结果的重要性。对准确率、精确率、召回率和F1分数等性能指标进行了严格分析,以评估模型的有效性。此外,讨论部分批判性地审视了当前方法面临的挑战,确定了改进的机会,并概述了机器学习与水稻病害检测交叉领域的未来研究方向。这篇全面的综述分析了总共121篇论文,强调了正在进行的跨学科研究对于满足不断变化的农业技术需求和加强全球粮食安全的重要性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验