Suppr超能文献

在一个以自然语言处理进行靶向干预为特征的全民医疗体系中,主动脉瓣狭窄的种族和民族差异。

Racial and ethnic disparities in aortic stenosis within a universal healthcare system characterized by natural language processing for targeted intervention.

作者信息

Biswas Dhruva, Wu Jack, Brown Sam, Bharucha Apurva, Fairhurst Natalie, Kaye George, Jones Kate, Copeland Freya Parker, O'Donnell Bethan, Kyle Daniel, Searle Tom, Pareek Nilesh, Dworakowski Rafal, Papachristidis Alexandros, Melikian Narbeh, Wendler Olaf, Deshpande Ranjit, Baghai Max, Galloway James, Teo James T, Dobson Richard, Byrne Jonathan, MacCarthy Philip, Shah Ajay M, Eskandari Mehdi, O'Gallagher Kevin

机构信息

School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.

Cardiovascular Department, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK.

出版信息

Eur Heart J Digit Health. 2025 Mar 18;6(3):392-403. doi: 10.1093/ehjdh/ztaf018. eCollection 2025 May.

Abstract

AIMS

Aortic stenosis (AS) is a condition marked by high morbidity and mortality in severe, symptomatic cases without intervention via transcatheter aortic valve implantation (TAVI) or surgical aortic valve replacement (SAVR). Racial and ethnic disparities in access to these treatments have been documented, particularly in North America, where socioeconomic factors such as health insurance confound analyses. This study evaluates disparities in AS management across racial and ethnic groups, accounting for socioeconomic deprivation, using an artificial intelligence (AI) framework.

METHODS AND RESULTS

We conducted a retrospective cohort study using a natural language processing pipeline to analyse both structured and unstructured data from > 1 million patients at a London hospital. Key variables included age, sex, self-reported race and ethnicity, AS severity, and socioeconomic status. The primary outcomes were rates of valvular intervention and all-cause mortality. Among 6967 patients with AS, Black patients were younger, more symptomatic, and more comorbid than White patients. Black patients with objective evidence of AS on echocardiography were less likely to receive a clinical diagnosis than White patients. In severe AS, TAVI and SAVR procedures were performed at lower rates among Black patients than among White patients, with a longer time to SAVR. In multivariate analysis of severe AS, controlling for socioeconomic status, Black patients experienced higher mortality (hazard ratio = 1.42, 95% confidence interval = 1.05-1.92, = 0.02).

CONCLUSION

An AI framework characterizes racial and ethnic disparities in AS management, which persist in a universal healthcare system, highlighting targets for future healthcare interventions.

摘要

目的

主动脉瓣狭窄(AS)在严重的有症状病例中,如果不通过经导管主动脉瓣植入术(TAVI)或外科主动脉瓣置换术(SAVR)进行干预,其发病率和死亡率都很高。已有文献记录了在获得这些治疗方面存在的种族和民族差异,特别是在北美,像医疗保险这样的社会经济因素使分析变得复杂。本研究使用人工智能(AI)框架评估了在考虑社会经济剥夺因素的情况下,不同种族和民族群体在AS管理方面的差异。

方法和结果

我们进行了一项回顾性队列研究,使用自然语言处理流程来分析伦敦一家医院超过100万名患者的结构化和非结构化数据。关键变量包括年龄、性别、自我报告的种族和民族、AS严重程度以及社会经济地位。主要结局是瓣膜干预率和全因死亡率。在6967例AS患者中,黑人患者比白人患者更年轻、症状更明显且合并症更多。超声心动图有AS客观证据的黑人患者比白人患者更不容易得到临床诊断。在严重AS患者中,黑人患者接受TAVI和SAVR手术的比例低于白人患者,且接受SAVR的时间更长。在对严重AS的多变量分析中,控制社会经济地位后,黑人患者的死亡率更高(风险比=1.42,95%置信区间=1.05-1.92,P=0.02)。

结论

一个人工智能框架描绘了AS管理中存在的种族和民族差异,这种差异在全民医疗体系中依然存在,突出了未来医疗干预的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7039/12088714/be0f432d226a/ztaf018_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验