Suppr超能文献

用于光电化学CO还原反应生成C或C产物的光阴极界面工程的最新进展

Recent Progress in Photocathode Interface Engineering for Photoelectrochemical CO Reduction Reaction to C or C Products.

作者信息

Kim Jae Hak, Hong Sung Hyun, Ahn Sang Hyun, Kim Soo Young

机构信息

Department of Materials Science and Engineering Korea University Seoul Republic of Korea.

School of Chemical Engineering and Material Science Chung-Ang University Seoul Republic of Korea.

出版信息

Exploration (Beijing). 2025 Feb 4;5(2):70010. doi: 10.1002/EXP.20240014. eCollection 2025 Apr.

Abstract

Photoelectrochemical (PEC) systems harness light absorption to initiate chemical reactions, while electrochemical reactions facilitate the conversion of reactants into desired products, ensuring more efficient and sustainable energy conversion in PECs. Central to optimizing the performance of PECs was the pivotal role played by interface engineering. This intricate process involves manipulating material interfaces at the atomic or nanoscale to enhance charge transfer, improve catalytic activity, and address limitations associated with bulk materials. The careful tuning of factors such as band gap, surface energy, crystallinity, defect characteristics, and structural attributes through interface engineering led to superior catalytic efficiency. Specifically, interface engineering significantly enhanced the efficiency of semiconductor-based PECs. Engineers strategically designed heterojunctions and manipulated catalyst surface properties to optimize the separation and migration of photogenerated charge carriers, minimizing recombination losses and improving performance overall. This review categorizes the discussion into four sections focusing on the interface engineering of PECs, providing valuable insights into recent research trends. Overall, the synergy between PECs and interface engineering holds tremendous promise for advancing renewable energy technologies and addressing environmental challenges by offering innovative solutions for sustainable energy conversion and storage.

摘要

光电化学(PEC)系统利用光吸收来引发化学反应,而电化学反应则促进反应物转化为所需产物,确保PEC中更高效、可持续的能量转换。界面工程在优化PEC性能中起着关键作用。这个复杂的过程涉及在原子或纳米尺度上操纵材料界面,以增强电荷转移、提高催化活性,并解决与块状材料相关的局限性。通过界面工程仔细调整诸如带隙、表面能、结晶度、缺陷特性和结构属性等因素,可实现卓越的催化效率。具体而言,界面工程显著提高了基于半导体的PEC的效率。工程师们通过策略性地设计异质结和操纵催化剂表面性质,优化光生电荷载流子的分离和迁移,最大限度地减少复合损失并整体提高性能。本综述将讨论分为四个部分,重点关注PEC的界面工程,为近期研究趋势提供有价值的见解。总体而言,PEC与界面工程之间的协同作用为推进可再生能源技术以及通过提供可持续能源转换和存储的创新解决方案应对环境挑战带来了巨大希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2489/12087397/b4d709c0fbde/EXP2-5-70010-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验