Suppr超能文献

观察者任务对从评估全视野数字乳腺摄影和数字乳腺断层合成性能的试验得出的结论的依赖性。

Dependence of observer task on conclusions drawn from trials evaluating the performance of full-field digital mammography and digital breast tomosynthesis.

作者信息

Li Dan, Makeev Andrey, Glick Stephen J

机构信息

US Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Diagnostics, Imaging and Software Reliability, Silver Spring, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2025 Jan;12(Suppl 1):S13014. doi: 10.1117/1.JMI.12.S1.S13014. Epub 2025 May 19.

Abstract

PURPOSE

We aim to refine the task-based evaluation of full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) through trials (ISTs). Previous ISTs mostly employ lesion detection tasks for task-based performance evaluation, which differ from clinical practice where the task normally involves the radiologists both detecting whether a suspicious lesion is present and rating how likely it is that the lesion is malignant. We hypothesize that differing conclusions may result from ISTs based on the defined task.

APPROACH

The shape of the masses was employed as a surrogate indicator for malignancy, with spiculated masses representing malignant lesions and lobular masses representing benign lesions. A convolutional neural network (CNN) model observer was then trained to differentiate between spiculated and nonspiculated masses using Monte Carlo-simulated breast images. This approach leverages prior research demonstrating that CNN-based frameworks can approximate the performance of an ideal observer. We systematically evaluated the effects of varying dose levels, detector pixel size, and projection angular range on the CNN model observer's performance in both detection and classification tasks, assessing the performance of both FFDM and DBT systems.

RESULTS

Our findings demonstrate significant variations in conclusions drawn from IST models depending on whether the task is lesion detection or classification. Specifically, we observed that varying average glandular dose levels from 2.0 to 0.5 mGy had little effect on the detection of masses, whereas a small but significant decrease in performance with reduced dose was observed with the classification task across FFDM and DBT. Similarly, reduced spatial resolution resulted in a small but significant decrease in performance with the classification task for FFDM. For DBT ISTs, we also observed that the preferred angular range varies depending on whether the task is detection or classification.

CONCLUSIONS

Integrating classification tasks into ISTs and potentially physical phantom studies can provide additional information in the evaluation of clinical breast imaging systems. This methodology can enhance the reliability of performance assessments for new breast imaging technologies. Depending on the study's objective, ISTs and physical phantom studies should aim to employ tasks that closely model actual clinical scenarios.

摘要

目的

我们旨在通过迭代模拟试验(ISTs)来完善基于任务的全视野数字乳腺摄影(FFDM)和数字乳腺断层合成(DBT)评估。以往的ISTs大多采用病变检测任务进行基于任务的性能评估,这与临床实践不同,在临床实践中,任务通常要求放射科医生既要检测可疑病变是否存在,又要对病变为恶性的可能性进行评级。我们假设基于定义的任务,ISTs可能会得出不同的结论。

方法

将肿块的形状用作恶性肿瘤的替代指标,有毛刺的肿块代表恶性病变,小叶状肿块代表良性病变。然后使用蒙特卡洛模拟乳腺图像训练卷积神经网络(CNN)模型观察者,以区分有毛刺和无毛刺的肿块。这种方法利用了先前的研究,该研究表明基于CNN的框架可以近似理想观察者的性能。我们系统地评估了不同剂量水平、探测器像素大小和投影角度范围对CNN模型观察者在检测和分类任务中的性能的影响,评估了FFDM和DBT系统的性能。

结果

我们的研究结果表明,根据任务是病变检测还是分类,从IST模型得出的结论存在显著差异。具体而言,我们观察到平均腺体剂量水平从2.0 mGy变化到0.5 mGy对肿块的检测影响不大,而在FFDM和DBT的分类任务中,随着剂量降低,性能有小幅但显著的下降。同样,空间分辨率降低导致FFDM分类任务的性能有小幅但显著的下降。对于DBT的ISTs,我们还观察到首选角度范围因任务是检测还是分类而异。

结论

将分类任务纳入ISTs以及潜在的物理体模研究可以在临床乳腺成像系统评估中提供额外信息。这种方法可以提高新乳腺成像技术性能评估的可靠性。根据研究目的,ISTs和物理体模研究应旨在采用与实际临床场景密切匹配的任务。

相似文献

7
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验