Velasco-Rodríguez Antonio, Regos Adrián, González Isabel Castillejo, Sillero Neftalí, Arenas-Castro Salvador
Área de Ecología, Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis C4, 1ª planta, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba, Spain.
Misión Biolóxica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC), Sede Santiago de Compostela, Santiago de Compostela, Spain.
Conserv Biol. 2025 Aug;39(4):e70067. doi: 10.1111/cobi.70067. Epub 2025 May 21.
Biodiversity loss is accelerating due to human actions, and decision-making for conservation needs to be streamlined. Ex situ biodiversity modeling and monitoring based on satellite time-series data could be an affordable and cost-efficient tool for improving the prioritization of conservation areas. We developed a set of dynamic indicators for conservation prioritization based on a habitat suitability index (HSI) trend analysis of 6 flagship species (two vascular plants, bird, amphibian, reptile, and mammal) over 19 years (2001-2019) in Andalucía (southern Spain). The HSI models were derived from ecological niche models (MaxEnt) and satellite time-series data (MODIS) as predictors. Based on the annual HSI models of all species and using the spatial conservation prioritization tool Marxan, we derived interannual dynamic indicators of habitat quality for conservation prioritization. Overall, models showed a generalized habitat regression. The best predictors of habitat quality were related to vegetation composition and structure (land cover), climate (land surface temperature), and energy balance (evapotranspiration), matching with the ecology of climate (such as Abies pinsapo) or vegetation-dependent (such as Alytes dickhilleni) species. Marxan identified interannual dynamics for the priority areas outside and inside protected areas. Interannual variation in habitat quality led to shifting conservation priorities across Andalucia from 2001 to 2019. Only 10.5% of the region and 20% of protected areas showed high spatial stability. Stable zones appeared both inside and outside protected areas. The south and northeast consistently exhibited high-priority regions. The legacy indicator highlighted areas of historical importance that have since declined in importance. New high-value areas emerged in the south. Static and dynamic approaches to conservation planning differed significantly. Many areas prioritized in 2019 alone ranked lower when long-term trends were considered. Our multiscale method underscores the need to integrate temporal dynamics into effective conservation strategies to achieve long-term conservation objectives in an efficient way.
由于人类活动,生物多样性丧失正在加速,保护决策需要简化。基于卫星时间序列数据的迁地生物多样性建模和监测可能是一种经济实惠且具有成本效益的工具,可用于改进保护区的优先排序。我们基于对西班牙南部安达卢西亚地区19年(2001 - 2019年)内6种旗舰物种(两种维管植物、鸟类、两栖动物、爬行动物和哺乳动物)的栖息地适宜性指数(HSI)趋势分析,开发了一套用于保护优先排序的动态指标。HSI模型源自生态位模型(MaxEnt)和作为预测因子的卫星时间序列数据(MODIS)。基于所有物种的年度HSI模型,并使用空间保护优先排序工具Marxan,我们得出了用于保护优先排序的栖息地质量年际动态指标。总体而言,模型显示出普遍的栖息地退化。栖息地质量的最佳预测因子与植被组成和结构(土地覆盖)、气候(地表温度)以及能量平衡(蒸散)有关,这与气候依赖型(如西班牙冷杉)或植被依赖型(如迪克希勒尼产婆蟾)物种的生态特征相匹配。Marxan确定了保护区内外优先区域的年际动态。栖息地质量的年际变化导致2001年至2019年期间安达卢西亚各地的保护优先事项发生变化。该地区仅有10.5%的区域和20%的保护区表现出高空间稳定性。稳定区域在保护区内外均有出现。南部和东北部一直是高优先区域。遗留指标突出了那些重要性后来下降的具有历史意义的区域。南部出现了新的高价值区域。保护规划的静态和动态方法存在显著差异。仅考虑2019年优先排序的许多区域,在考虑长期趋势时排名较低。我们的多尺度方法强调了将时间动态纳入有效保护策略以高效实现长期保护目标的必要性。