Barbalinardo Marianna, Chiarini Francesca, Teti Gabriella, Paganelli Francesca, Mercadelli Elisa, Bartoletti Andrea, Migliori Andrea, Piazzi Manuela, Bertacchini Jessika, Sena Paola, Sanson Alessandra, Falconi Mirella, Palumbo Carla, Cavallini Massimiliano, Gentili Denis
Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129 Bologna, Italy.
Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, via del Pozzo 71, 41124 Modena, Italy.
ACS Appl Bio Mater. 2025 Jun 16;8(6):5032-5043. doi: 10.1021/acsabm.5c00392. Epub 2025 May 21.
Silver nanoparticles (AgNPs) hold great promise in biomedical applications due to their unique properties and potential for specific tissue targeting. However, the clinical translation of nanoparticle-based therapeutics remains challenging, primarily due to an incomplete understanding of how nanoparticle properties influence interactions at the nano-bio interface, as well as the role of surface-adsorbed proteins (i.e., protein corona) in modulating nanoparticle-cell interactions. This study demonstrates that the surface charge has a greater influence than protein corona formation in determining the cytotoxicity, cellular uptake, and biodistribution of AgNPs. Using negatively and positively charged AgNPs, we show that while protein corona formation is essential for ensuring nanoparticle availability for cellular interactions, the adsorption of biomolecules is nonspecific and independent of surface charge. Conversely, the surface charge significantly influences the interactions of AgNPs with cells. Positively charged nanoparticles exhibit enhanced cellular uptake, preferential accumulation in lysosomes, and pronounced mitochondrial damage compared to their negatively charged counterparts, resulting in greater cytotoxic effects. This effect is particularly evident in human breast cancer cells, where negatively charged nanoparticles show minimal uptake and cytotoxicity. These findings demonstrate that surface charge is the primary factor governing nanoparticle-cell interactions rather than protein corona formation. Nonetheless, the protein corona plays a critical role in stabilizing nanoparticles in physiological environments.
银纳米颗粒(AgNPs)因其独特的性质和特定组织靶向的潜力,在生物医学应用中具有巨大的前景。然而,基于纳米颗粒的治疗方法的临床转化仍然具有挑战性,主要原因是对纳米颗粒性质如何影响纳米-生物界面相互作用以及表面吸附蛋白(即蛋白质冠层)在调节纳米颗粒-细胞相互作用中的作用了解不全面。本研究表明,在决定AgNPs的细胞毒性、细胞摄取和生物分布方面,表面电荷比蛋白质冠层形成的影响更大。使用带负电荷和正电荷的AgNPs,我们表明,虽然蛋白质冠层的形成对于确保纳米颗粒可用于细胞相互作用至关重要,但生物分子的吸附是非特异性的,且与表面电荷无关。相反,表面电荷显著影响AgNPs与细胞的相互作用。与带负电荷的纳米颗粒相比,带正电荷的纳米颗粒表现出增强的细胞摄取、在溶酶体中的优先积累以及明显的线粒体损伤,从而导致更大的细胞毒性作用。这种效应在人乳腺癌细胞中尤为明显,其中带负电荷的纳米颗粒显示出最小的摄取和细胞毒性。这些发现表明,表面电荷是控制纳米颗粒-细胞相互作用的主要因素,而非蛋白质冠层的形成。尽管如此,蛋白质冠层在生理环境中稳定纳米颗粒方面起着关键作用。