Suppr超能文献

在块状纳米多孔金属间合金上原位形成多主元氧化物用于在安培级电流密度下超高效制氢

In Situ Formation of Multi-Principal Element Oxide on a Bulk Nanoporous Intermetallic Alloy for Ultra-Efficient Hydrogen Production at Ampere-Level Current Density.

作者信息

Gao Xiang, Lu Wenyu, Shuang Shuo, He Quanfeng, Ding Zhaoyi, Liu Yujing, Guo Baisong, Jia Zhe, Zhao Shijun, Yang Yong

机构信息

Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong 999077, China.

Institute of Materials Modification and Modeling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jun 4;17(22):32392-32399. doi: 10.1021/acsami.5c03821. Epub 2025 May 21.

Abstract

Developing highly efficient and durable electrocatalysts for hydrogen production via water splitting remains a pivotal challenge for sustainable energy. In this work, we present a bulk nanoporous C15 intermetallic alloy synthesized through electrodealloying of a eutectic multiprincipal element precursor. Unlike conventional metallic nanostructures, this catalyst features an ultrathin multiprincipal element oxide (MPEO) layer, which generates abundant active sites and achieves exceptional hydrogen evolution reaction (HER) activity, surpassing most reported catalysts. Crucially, the material demonstrates unprecedented stability at industrial-level current densities (1 A/cm at 396 mV), enabled by operando amorphization of the MPEO layer during prolonged operation. This structural evolution stabilizes the catalyst-electrolyte interface while retaining intrinsic activity. Our findings redefine design principles for robust, high-performance electrocatalysts by integrating bulk intermetallic architectures with self-optimizing surface chemistry.

摘要

开发用于通过水分解制氢的高效且耐用的电催化剂仍然是可持续能源面临的关键挑战。在这项工作中,我们展示了一种通过共晶多主元前驱体的电极合金化合成的块状纳米多孔C15金属间合金。与传统金属纳米结构不同,这种催化剂具有超薄的多主元氧化物(MPEO)层,该层产生丰富的活性位点并实现了卓越的析氢反应(HER)活性,超过了大多数已报道的催化剂。至关重要的是,该材料在工业级电流密度(396 mV下为1 A/cm²)下表现出前所未有的稳定性,这是由于在长时间运行过程中MPEO层的原位非晶化实现的。这种结构演变稳定了催化剂-电解质界面,同时保留了固有活性。我们的研究结果通过将块状金属间结构与自我优化的表面化学相结合,重新定义了坚固、高性能电催化剂的设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1e2/12147075/e5209e4ec537/am5c03821_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验