Mahbub Luba, Kozlov Guennadi, Knorn Caroline, Gehring Kalle
Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
J Biol Chem. 2025 Jun;301(6):110251. doi: 10.1016/j.jbc.2025.110251. Epub 2025 May 19.
Phosphatases of regenerating liver (PRL or PTP4A) are protein phosphatases implicated in cell growth, magnesium homeostasis, and cancer metastasis. During catalysis, a phosphocysteine intermediate forms, which must undergo hydrolysis to regenerate the active enzyme. In addition to dephosphorylating substrates, PRLs act as pseudo-phosphatases and bind CBS-pair domain divalent metal cation transport mediators (CNNMs) to regulate magnesium transport. In this study, we investigate the role of PRL residues in phosphocysteine hydrolysis using mutagenesis, enzyme assays, and X-ray crystallography. Loss of an aspartic acid and cysteine in the catalytic site disrupts hydrolysis and stabilizes the phosphocysteine intermediate for weeks. We use this C49S/D72A double mutant to determine the crystal structure of the cysteine-phosphorylated form of PRL1 (PTP4A1). The structure confirms that phosphocysteine sterically interferes with CNNM binding, consistent with previous biochemical studies. In vitro enzyme assays reveal the aspartic acid mutation increases the initial rate of catalysis for all three PRL paralogs while the homologous mutation in the phosphatases, PTP1B and PTPN12, disrupts catalysis. This highlights the mechanistic differences between PRLs and classical protein tyrosine phosphatases. Our findings refine our understanding of PRL catalysis and identify novel mutations for investigating PRL function in cancer and magnesium homeostasis.
再生肝脏磷酸酶(PRL或PTP4A)是与细胞生长、镁稳态和癌症转移相关的蛋白磷酸酶。在催化过程中,会形成一种磷酸半胱氨酸中间体,它必须经过水解才能使活性酶再生。除了使底物去磷酸化外,PRL还充当假磷酸酶,并与CBS结构域二价金属阳离子转运介质(CNNM)结合以调节镁转运。在本研究中,我们使用诱变、酶分析和X射线晶体学来研究PRL残基在磷酸半胱氨酸水解中的作用。催化位点中天冬氨酸和半胱氨酸的缺失会破坏水解,并使磷酸半胱氨酸中间体稳定数周。我们使用这种C49S/D72A双突变体来确定PRL1(PTP4A1)的半胱氨酸磷酸化形式的晶体结构。该结构证实磷酸半胱氨酸在空间上干扰CNNM结合,这与先前的生化研究一致。体外酶分析表明,天冬氨酸突变提高了所有三种PRL旁系同源物的初始催化速率,而磷酸酶PTP1B和PTPN12中的同源突变则破坏了催化作用。这突出了PRL与经典蛋白酪氨酸磷酸酶之间的机制差异。我们的研究结果完善了我们对PRL催化的理解,并确定了用于研究PRL在癌症和镁稳态中功能的新突变。