Ballard Jake, Hubbard Matthew, Jung Sung-Jin, Rojas Vanessa, Ung Richard, Suh Junwoo, Kim MinSoo, Lee Joonhyun, Pierce Jonathan M, Venkatasubramanian Rama
Johns Hopkins University Applied Physics Laboratory (JHUAPL), Laurel, MD, USA.
Samsung Research, Samsung Electronics, Seoul, 06765, Republic of Korea.
Nat Commun. 2025 May 21;16(1):4421. doi: 10.1038/s41467-025-59698-y.
Refrigeration needs are increasing worldwide with a demand for alternates to bulky poorly scalable vapor compression systems. Here, we demonstrate the first proof of practical solid-state refrigeration, using nano-engineered controlled hierarchically engineered superlattice thin-film thermoelectric materials. With 100%-better thermoelectric materials figure of merit, ZT, than the conventional bulk materials near 300 K, we demonstrate (i) module-level ZT greater than 75% and (ii) a system-level refrigeration ZT 70% better than that of bulk devices. Thin-film thermoelectric modules offer 100-300% better coefficient-of-performance than bulk devices depending on operational scenarios; system-level coefficient-of-performance is ~15 for temperature differentials of 1.3 °C. The thin-film devices enable more heat pumping per P-N couple, relevant for distributed and portable refrigeration, and electronics cooling. Beyond the demonstration of nano-engineered materials for a system-level advantage, we utilize 1/1000 active materials with scalable microelectronic manufacturing. The improved efficiency and ultra-low thermoelectric materials usage herald a new beginning in solid-state refrigeration.
随着全球对笨重且扩展性差的蒸汽压缩系统替代品的需求增加,制冷需求也在不断增长。在此,我们展示了首个实用固态制冷的证据,使用了纳米工程控制的分级工程超晶格薄膜热电材料。在接近300K的温度下,我们的热电材料优值ZT比传统块体材料高出100%,我们证明了(i)模块级ZT大于75%,以及(ii)系统级制冷ZT比块体器件高出70%。薄膜热电模块根据运行场景提供比块体器件高100%-300%的性能系数;对于1.3°C的温差,系统级性能系数约为15。薄膜器件每P-N对能够实现更多的热泵浦,适用于分布式和便携式制冷以及电子设备冷却。除了展示纳米工程材料在系统级的优势外,我们还利用可扩展微电子制造技术使用了1/1000的活性材料。效率的提高和热电材料的超低使用量预示着固态制冷的新开端。