Suppr超能文献

用于中红外的逆设计非周期多层完美吸收体可实现可调性、可切换性和角度鲁棒性。

Inverse designed aperiodic multilayer perfect absorbers for mid infrared enable tunability switchability and angular robustness.

作者信息

Nazari Masoumeh, Banad Yaser M, Sharif Sarah

机构信息

The School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, 73019, USA.

出版信息

Sci Rep. 2025 May 21;15(1):17614. doi: 10.1038/s41598-025-99995-6.

Abstract

We present a class of inverse-designed, aperiodic multilayer graphene-based perfect absorbers operating in the mid-infrared spectrum (3-5 μm), a range vital for atmospheric transparency and advanced sensing. Our design leverages a fixed material sequence-graphene, PPSU dielectric spacers, and PbSe layers on a gold substrate-while achieving precise spectral tunability solely through layer thickness variation, enabling absorption peak control in 0.25 μm steps without any change in material composition. This physical tunability allows scalable fabrication of wavelength-specific devices using a single manufacturing process. We further demonstrate electrical switchability by dynamically modulating graphene's chemical potential (µc from 0 eV to 1 eV), enabling absorption amplitude control and wavelength redshifting without structural alteration. The proposed absorber achieves > 99.9% efficiency using only five graphene layers in a compact ~ 2 μm stack, offering significant advantages in size, weight, power, and cost. Our hybrid micro-genetic inverse design algorithm enables this performance while preserving > 90% absorption at incidence angles up to 52°, supporting broad angular robustness. Extensive simulation and field distribution analyses confirm the role of plasmonic confinement and impedance matching. Additionally, we validate the design's fabrication tolerance and benchmark its performance against recent state-of-the-art absorbers. By combining advanced inverse design with nanophotonic structures, our work advances the field of mid-infrared absorbers, providing a scalable and efficient platform for next-generation optical devices.

摘要

我们展示了一类通过逆向设计的、基于非周期性多层石墨烯的完美吸收体,其工作在中红外光谱(3 - 5μm)范围内,该范围对大气透明度和先进传感至关重要。我们的设计利用了固定的材料序列——石墨烯、聚亚苯基砜(PPSU)介电间隔层以及金衬底上的硒化铅层——同时仅通过层厚度变化实现精确的光谱可调性,能够以0.25μm的步长控制吸收峰,而无需改变材料成分。这种物理可调性允许使用单一制造工艺可扩展地制造特定波长的器件。我们还通过动态调制石墨烯的化学势(µc从0 eV到1 eV)展示了电开关特性,能够在不改变结构的情况下控制吸收幅度和波长红移。所提出的吸收体在紧凑的约2μm堆叠中仅使用五层石墨烯就实现了>99.9%的效率,在尺寸、重量、功率和成本方面具有显著优势。我们的混合微遗传逆向设计算法实现了这种性能,同时在高达52°的入射角下保持>90%的吸收率,支持广泛的角度鲁棒性。广泛的模拟和场分布分析证实了等离子体限制和阻抗匹配的作用。此外,我们验证了该设计的制造容差,并将其性能与最近的先进吸收体进行了基准测试。通过将先进的逆向设计与纳米光子结构相结合,我们的工作推动了中红外吸收体领域的发展,为下一代光学器件提供了一个可扩展且高效的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ad/12095583/96aaf5c51d9d/41598_2025_99995_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验