Suppr超能文献

优化包含氧化石墨烯和氧化锌纳米颗粒的麻疯树生物柴油的性能、燃烧和排放特性:一种人工神经网络-响应曲面法

Optimizing performance, combustion and emission characteristics of mahua biodiesel included GO and ZnO nanoparticles: an ANN-RSM approach.

作者信息

Pala Srinivasa Reddy, Mohan Mangu Venkata Krishna, Vanthala Varaha Siva Prasad

机构信息

Department of Marine Engineering, Andhra University, Visakhapatnam, India.

Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, India.

出版信息

Environ Sci Pollut Res Int. 2025 May;32(23):14169-14201. doi: 10.1007/s11356-025-36530-0. Epub 2025 May 21.

Abstract

The research aims to investigate the impact of GO and ZnO nanoparticles in a 20% mahua biodiesel blend (B20) on direct injection diesel engine performance. Mahua oil, selected for its non-edible source and local availability, provides a sustainable fuel option. To improve combustion and reduce emissions, nanoparticles are added. Artificial neural networks (ANNs) and response surface methodology (RSM) are then used to predict and optimize engine operating parameters, leveraging their ability to model intricate relationships and analyze experimental data, ultimately aiming to create a more efficient and environmentally friendly fuel system. At a concentration of 75 ppm, GO and ZnO nanoparticles were taken into consideration. Additionally, a dispersant (TWEEN 80) and surfactant (CTAB) were mixed respectively at a ratio of 1:1. Using a spectrophotometer, stability analysis was carried out on different nanofuel samples, and a study based on experiments was done on a diesel engine. The output factors examined are BSFC, BTE, NHRR, CP, UHC, CO, NO, and smoke Opacity. These metrics were based on performance, combustion, and emission characteristics. Input parameters such as fuel samples, injection pressure, and engine load were considered. The injection pressure varied at 200, 225, and 250 bar, whereas the load was considered to be 5%, 50%, 75%, and 100%, respectively. When compared to other fuel samples, dispersant included GO and ZnO nanoparticles in B20 shown optimal results. The B20 + GO 75 ppm + TWEEN 80 75 ppm combination has shown a 5.293% decrease in BSFC and 5.067% improvement in BTE at 250 bars. Furthermore, significant improvements were observed in key combustion parameters, CP increased by 3.13%, and NHRR increased by a substantial 43.50%. CO, UHC, NO, and smoke opacity were all reduced by around 11.07%, 37.63%, 27.77%, and 38.55% respectively. With R values consistently between 0.93 and 0.99, the ANN and RSM predictions demonstrate a perfect fit to the data, confirming their high accuracy and reliability.

摘要

该研究旨在探究氧化石墨烯(GO)和氧化锌(ZnO)纳米颗粒在20%的麻疯树生物柴油混合物(B20)中对直喷式柴油发动机性能的影响。选用麻疯树油是因其不可食用且在当地容易获取,它提供了一种可持续的燃料选择。为了改善燃烧并减少排放,添加了纳米颗粒。随后使用人工神经网络(ANNs)和响应面方法(RSM)来预测和优化发动机运行参数,利用它们对复杂关系进行建模和分析实验数据的能力,最终目标是创建一个更高效且环保的燃料系统。考虑了浓度为75 ppm的GO和ZnO纳米颗粒。此外,分别以1:1的比例混合了一种分散剂(吐温80)和一种表面活性剂(十六烷基三甲基溴化铵,CTAB)。使用分光光度计对不同的纳米燃料样品进行了稳定性分析,并在一台柴油发动机上进行了基于实验的研究。所考察的输出因素有制动特定燃油消耗率(BSFC)、制动热效率(BTE)、净热释放率(NHRR)、燃烧峰值压力(CP)、未燃碳氢化合物(UHC)、一氧化碳(CO)、氮氧化物(NO)和烟度。这些指标基于性能、燃烧和排放特性。考虑了诸如燃料样品、喷射压力和发动机负荷等输入参数。喷射压力在200、225和250 bar之间变化,而负荷分别设为5%、50%、75%和100%。与其他燃料样品相比,在B20中包含GO和ZnO纳米颗粒以及分散剂的情况显示出最佳结果。在250 bar时,B20 + 75 ppm的GO + 75 ppm的吐温80组合的BSFC降低了5.293%,BTE提高了5.067%。此外,在关键燃烧参数方面观察到显著改善,CP增加了3.13%,NHRR大幅增加了43.50%。CO、UHC、NO和烟度分别降低了约11.07%、37.63%、27.77%和38.55%。人工神经网络和响应面方法的预测结果的R值始终在0.93至0.99之间,表明与数据完美拟合,证实了它们的高精度和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验