Suppr超能文献

利用生成对抗网络(GAN)从CT图像合成[F]PSMA - 1007 PET骨图像用于前列腺癌骨转移的早期检测:一项初步验证研究。

Synthesizing [F]PSMA-1007 PET bone images from CT images with GAN for early detection of prostate cancer bone metastases: a pilot validation study.

作者信息

Chai Liming, Yao Xiaolong, Yang Xiaofeng, Na Renhua, Yan Wei, Jiang Mingzheng, Zhu Haixu, Sun Canwen, Dai Zeqiang, Yang Xueying

机构信息

Department of Nuclear Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.

出版信息

BMC Cancer. 2025 May 21;25(1):907. doi: 10.1186/s12885-025-14301-x.

Abstract

BACKGROUND

[F]FDG PET/CT scan combined with [F]PSMA-1007 PET/CT scan is commonly conducted for detecting bone metastases in prostate cancer (PCa). However, it is expensive and may expose patients to more radiation hazards. This study explores deep learning (DL) techniques to synthesize [F]PSMA-1007 PET bone images from CT bone images for the early detection of bone metastases in PCa, which may reduce additional PET/CT scans and relieve the burden on patients.

METHODS

We retrospectively collected paired whole-body (WB) [F]PSMA-1007 PET/CT images from 152 patients with clinical and pathological diagnosis results, including 123 PCa and 29 cases of benign lesions. The average age of the patients was 67.48 ± 10.87 years, and the average lesion size was 8.76 ± 15.5 mm. The paired low-dose CT and PET images were preprocessed and segmented to construct the WB bone structure images. 152 subjects were randomly stratified into training, validation, and test groups in the number of 92:41:19. Two generative adversarial network (GAN) models-Pix2pix and Cycle GAN-were trained to synthesize [F]PSMA-1007 PET bone images from paired CT bone images. The performance of two synthesis models was evaluated using quantitative metrics of mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index metrics (SSIM), as well as the target-to-background ratio (TBR).

RESULTS

The results of DL-based image synthesis indicated that the synthesis of [F]PSMA-1007 PET bone images from low-dose CT bone images was highly feasible. The Pix2pix model performed better with an SSIM of 0.97, PSNR of 44.96, MSE of 0.80, and MAE of 0.10, respectively. The TBRs of bone metastasis lesions calculated on DL-synthesized PET bone images were highly correlated with those of real PET bone images (Pearson's r > 0.90) and had no significant differences (p < 0.05).

CONCLUSIONS

It is feasible to generate synthetic [F]PSMA-1007 PET bone images from CT bone images by using DL techniques with reasonable accuracy, which can provide information for early detection of PCa bone metastases.

摘要

背景

[F]FDG PET/CT扫描联合[F]PSMA - 1007 PET/CT扫描常用于检测前列腺癌(PCa)的骨转移。然而,该方法费用高昂,且可能使患者面临更多辐射危害。本研究探索深度学习(DL)技术,从CT骨图像合成[F]PSMA - 1007 PET骨图像,用于PCa骨转移的早期检测,这可能减少额外的PET/CT扫描并减轻患者负担。

方法

我们回顾性收集了152例有临床和病理诊断结果患者的配对全身(WB)[F]PSMA - 1007 PET/CT图像,其中包括123例PCa和29例良性病变。患者的平均年龄为67.48±10.87岁,平均病变大小为8.76±15.5毫米。对配对的低剂量CT和PET图像进行预处理和分割,以构建WB骨结构图像。152名受试者被随机分层为训练组、验证组和测试组,人数分别为92:41:19。训练了两个生成对抗网络(GAN)模型——Pix2pix和Cycle GAN,以从配对的CT骨图像合成[F]PSMA - 1007 PET骨图像。使用平均绝对误差(MAE)、均方误差(MSE)、峰值信噪比(PSNR)、结构相似性指数度量(SSIM)以及目标与背景比率(TBR)等定量指标评估两种合成模型的性能。

结果

基于深度学习的图像合成结果表明,从低剂量CT骨图像合成[F]PSMA - 1007 PET骨图像是高度可行的。Pix2pix模型表现更好,其SSIM分别为0.97、PSNR为44.96、MSE为0.80、MAE为0.10。在深度学习合成的PET骨图像上计算的骨转移病变的TBR与真实PET骨图像的TBR高度相关(Pearson相关系数r>0.90),且无显著差异(p<0.05)。

结论

使用深度学习技术从CT骨图像生成合成的[F]PSMA - 1007 PET骨图像具有合理的准确性,是可行的,可为PCa骨转移的早期检测提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验