Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA.
Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA.
Cell Rep Med. 2024 Mar 19;5(3):101463. doi: 10.1016/j.xcrm.2024.101463. Epub 2024 Mar 11.
[F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.
氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)和计算机断层扫描(CT)是现代医学中不可或缺的组成部分。尽管 PET 可以提供额外的诊断价值,但它成本高昂且并非普遍适用,特别是在低收入国家。为了弥补这一差距,我们开发了一个条件生成对抗网络管道,可以根据多中心多模态肺癌数据集(n=1478)从诊断 CT 扫描中生成 FDG-PET。合成的 PET 图像在成像、生物学和临床方面得到了验证。放射科医生确认了合成和实际 PET 扫描之间具有相当的成像质量和肿瘤对比度。放射基因组学分析进一步证明,合成 PET 的失调癌症标志性通路与实际 PET 一致。我们还展示了合成 PET 在提高肺癌诊断、分期、风险预测和预后方面的临床价值。综上所述,这项概念验证研究证明了应用深度学习从 CT 获得高保真 PET 的可行性。