Jie Xiangyu, Slocombe Daniel R, Porch Adrian, Xiao Tiancun, González-Cortés Sergio, Aldrees Saud, Dilworth Jon R, Yao Benzhen, Jones Martin-Owen, Kuznetsov Vladimir, Edwards Peter P
Department of Chemistry, Queen Mary University of London, London, UK.
School of Engineering, Cardiff University, Cardiff, South Glamorgan, UK.
Philos Trans A Math Phys Eng Sci. 2025 May 22;383(2297):20240061. doi: 10.1098/rsta.2024.0061.
Presently, there is no single, clear route for the near-term production of the huge volumes of CO-free hydrogen necessary for the global transition to any type of hydrogen economy. All conventional routes to produce hydrogen from hydrocarbon fossil fuels (notably natural gas) involve the production-and hence the emission-of CO, most notably in the steam methane reforming (SMR) process. Our recent studies have highlighted another route; namely, the critical role played by the microwave-initiated catalytic pyrolysis, decomposition or deconstruction of fossil hydrocarbon fuels to produce hydrogen with low to near-zero CO emissions together with high-value solid nanoscale carbonaceous materials. These innovations have been applied, firstly to wax, then methane, crude oil, diesel, then biomass and most recently Saudi Arabian light crude oil, as well as plastics waste. Microwave catalysis has therefore now emerged as a highly effective route for the rapid and effective production of hydrogen and high-value carbon nanomaterials co-products, in many cases accompanied by low to near-zero CO emissions. Underpinning all of these advances has been the important concept from solid state physics of the so-called Size-Induced-Metal-Insulator Transition (SIMIT) in mesoscale or mesoscopic particles of catalysts. The mesoscale refers to a range of physical scale in-between the micro- and the macro-scale of matter (Huang W, Li J and Edwards PP, 2018, Mesoscience: exploring the common principle at mesoscale, . , 321-326 (doi:10.1093/nsr/nwx083)). We highlight here that the actual physical size of the mesoscopic catalyst particles, located close to the SIMIT, is the primary cause of their enhanced microwave absorption and rapid heating of particles to initiate the catalytic-and highly selective-breaking of carbon-hydrogen bonds in fossil hydrocarbons and plastics to produce clean hydrogen and nanoscale carbonaceous materials. Importantly, also, since the surrounding 'bath' of hydrocarbons is cooler than the microwave-heated catalytic particles themselves, the produced neutral hydrogen molecule can quickly diffuse from the active sites. This important feature of microwave heating thereby minimizes undesirable side reactions, a common feature of conventional thermal heating in heterogeneous catalysis. The low to near-zero CO production of hydrogen via microwave-initiated decomposition or cracking of abundant hydrocarbon fossil fuels may be an interim, viable alternative to the conventional, widely-used SMR, that a highly efficient process, but unfortunately associated with the emission of vast quantities of CO. Microwave-initiated catalytic decomposition also opens up the intriguing possibility of using distributed methane in the current natural gas structure to produce hydrogen and high-value solid carbon at either central or distributed sites. That approach will lessen many of the safety and environmental concerns associated with transporting hydrogen using the existing natural gas infrastructure. When completely optimized, microwave-initiated catalytic decomposition of methane (and indeed all hydrocarbon sources) will produce no aerial carbon (CO), and only solid carbon as a co-product. Furthermore, reaction conditions can surely be optimized to target the production of high-quality synthetic graphite as the major carbon-product; that material of considerable importance as the anode material for lithium-ion batteries. Even without aiming for such products derived from the solid carbon co-product, it is of course far easier to capture solid carbon rather than capturing gaseous CO at either the central or distributed sites. Through microwave-initiated catalytic pyrolysis, this decarbonization of fossil fuels can now become the potent source of sustainable hydrogen and high-value carbon nanomaterials.This article is part of the discussion meeting issue 'Microwave science in sustainability'.
目前,对于全球向任何类型的氢经济转型所需的大量无碳氢气的近期生产,尚无单一、明确的途径。所有从碳氢化石燃料(尤其是天然气)生产氢气的传统途径都涉及一氧化碳的产生,因此会产生排放,最显著的是在蒸汽甲烷重整(SMR)过程中。我们最近的研究突出了另一条途径;即微波引发的催化热解、分解或解构化石碳氢燃料在生产低至近零一氧化碳排放的氢气以及高价值固体纳米级含碳材料方面所起的关键作用。这些创新首先应用于蜡,然后是甲烷、原油、柴油,接着是生物质,最近还应用于沙特阿拉伯轻质原油以及塑料废料。因此微波催化现已成为快速有效生产氢气和高价值碳纳米材料副产品的高效途径,在许多情况下还伴随着低至近零一氧化碳排放。支撑所有这些进展背后的是固态物理学中所谓的尺寸诱导金属 - 绝缘体转变(SIMIT)这一重要概念,它存在于催化剂的中尺度或介观粒子中。中尺度是指介于物质微观和宏观尺度之间的一系列物理尺度(Huang W, Li J and Edwards PP, 2018, Mesoscience: exploring the common principle at mesoscale,., 321 - 326 (doi:10.1093/nsr/nwx083))。我们在此强调,位于接近SIMIT的介观催化剂颗粒的实际物理尺寸是其增强微波吸收以及颗粒快速加热以引发化石碳氢化合物和塑料中碳 - 氢键的催化且高选择性断裂从而生产清洁氢气和纳米级含碳材料的主要原因。同样重要的是,由于碳氢化合物的周围“浴”比微波加热的催化颗粒本身温度低,产生的中性氢分子可以迅速从活性位点扩散。微波加热的这一重要特性从而将不需要的副反应降至最低,这是多相催化中传统热加热的一个常见特征。通过微波引发的分解或裂解丰富的碳氢化石燃料来生产低至近零一氧化碳的氢气,可能是传统的、广泛使用但不幸伴随着大量一氧化碳排放的SMR的一种临时可行替代方案。微波引发的催化分解还开启了利用当前天然气结构中的分布式甲烷在中心或分布式站点生产氢气和高价值固体碳这一有趣的可能性。这种方法将减少许多与使用现有天然气基础设施运输氢气相关的安全和环境问题。当完全优化后,微波引发对甲烷(实际上所有碳氢化合物来源)的催化分解将不会产生气态碳(一氧化碳),仅产生固体碳作为副产品。此外,反应条件肯定可以优化以生产高质量合成石墨作为主要碳产物;这种材料作为锂离子电池的负极材料具有相当重要的意义。即使不追求从固体碳副产品衍生出的此类产品,当然在中心或分布式站点捕获固体碳远比捕获气态一氧化碳要容易得多。通过微波引发的催化热解,化石燃料脱碳现在可以成为可持续氢气和高价值碳纳米材料强有力的来源。本文是“可持续发展中的微波科学”讨论会议专题的一部分。