Suppr超能文献

使用机器学习模型预测外周动脉疾病血管重建术后血栓形成。

Using machine learning models to predict post-revascularization thrombosis in PAD.

作者信息

Ghandour Samir, Rodriguez Alvarez Adriana A, Cieri Isabella F, Patel Shiv, Boya Mounika, Chaudhary Rahul, Poucey Anna, Dua Anahita

机构信息

Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, United States.

Division of Cardiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.

出版信息

Front Artif Intell. 2025 May 7;8:1540503. doi: 10.3389/frai.2025.1540503. eCollection 2025.

Abstract

BACKGROUND

Graft/ stent thrombosis after lower extremity revascularization (LER) is a serious complication in patients with peripheral arterial disease (PAD), often leading to amputation. Thus, predicting arterial thrombotic events (ATE) within 1 year is crucial. Given the high rates of thrombosis post-revascularization, this study aimed to develop a machine learning model (MLM) incorporating viscoelastic testing and patient-specific variables to predict ATE following LER.

METHODS

We prospectively enrolled PAD patients undergoing LER from 2020 to 2024, collecting demographic, clinical, and intervention-related data alongside perioperative thromboelastography with platelet mapping (TEG-PM) values over 12 months post-revascularization. Univariate analysis identified predictors from 52 candidate variables. Multiple MLMs, including logistic regression, XGBoost, and decision tree algorithms, were developed and evaluated using a 70-30 train-test split and five-fold cross-validation. The Synthetic Minority Oversampling Technique (SMOTE) was employed to address the class imbalance between the primary outcomes (ATE vs. no ATE). Model performance was assessed by area under the curve (AUC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value.

RESULTS

Of the 308 patients analyzed, 66% were male, 84% were White, and 18.3% experienced an ATE during the one-year post-revascularization follow-up period. The logistic regression MLM demonstrated the best combined descriptive and calibration performance, especially when TEG-PM parameters were used in combination with patient-specific baseline characteristics, with an AUC of 0.76, classification accuracy of 70%, sensitivity of 68%, and specificity of 71%.

CONCLUSION

Combining patient-specific characteristics with TEG-PM values in MLMs can effectively predict ATE following LER in PAD patients, enhancing high-risk patient identification and enabling tailored thromboprophylaxis.

摘要

背景

下肢血管重建术(LER)后移植物/支架血栓形成是外周动脉疾病(PAD)患者的一种严重并发症,常导致截肢。因此,预测1年内的动脉血栓形成事件(ATE)至关重要。鉴于血管重建术后血栓形成率较高,本研究旨在开发一种结合粘弹性测试和患者特定变量的机器学习模型(MLM),以预测LER后的ATE。

方法

我们前瞻性纳入了2020年至2024年接受LER的PAD患者,收集人口统计学、临床和干预相关数据,以及血管重建术后12个月的围手术期血栓弹力图血小板功能分析(TEG-PM)值。单因素分析从52个候选变量中确定预测因素。使用70-30训练-测试分割和五折交叉验证开发并评估了包括逻辑回归、XGBoost和决策树算法在内的多个MLM。采用合成少数过采样技术(SMOTE)来解决主要结局(ATE与无ATE)之间的类别不平衡问题。通过曲线下面积(AUC)、准确性、敏感性、特异性、阴性预测值和阳性预测值评估模型性能。

结果

在分析的308例患者中,66%为男性,84%为白人,18.3%在血管重建术后1年的随访期内发生了ATE。逻辑回归MLM表现出最佳的综合描述和校准性能,特别是当TEG-PM参数与患者特定的基线特征结合使用时,AUC为0.76,分类准确率为70%,敏感性为68%,特异性为71%。

结论

在MLM中结合患者特定特征和TEG-PM值可以有效预测PAD患者LER后的ATE,加强对高危患者的识别,并实现针对性的血栓预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ad/12092403/5e989c9ef0d2/frai-08-1540503-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验