Liu Xing, Shen Feng, Wang Ting, Li Jingru, Sheng Xiaowei, Deng Yulan, Zhang Xuewei, Zhao Bing, Zhou Ying, Shang Peng, Shi Xinyi, Zhao Zilong, Yu Zhonglin, Mukherjee Sarbajit, Saeed Anwaar, Liu Jing
Department of Oncology, Ankang Central Hospital, Ankang, China.
Department of Clinical Laboratory, Ankang Central Hospital, Ankang, China.
J Thorac Dis. 2025 Apr 30;17(4):2605-2622. doi: 10.21037/jtd-2025-341. Epub 2025 Apr 21.
Methylation-related regulators may be involved in the prognostic prediction of esophageal squamous cell carcinoma (ESCC). Our study aimed to apply bioinformatics to screen methylation-related regulators for the construction of a prognostic model for patients with ESCC and to assess their diagnostic value and correlation with immune infiltration.
Prognosis-related genes were identified from The Cancer Genome Atlas (TCGA) database. Methylation-associated genes were filtered using the GeneCards database. We used the least absolute shrinkage and selection operator (LASSO) and Cox proportional hazards regression to identify the prognostic indicators. We applied the single-sample gene set enrichment analysis (ssGSEA) to clarify the relationship between prognostic indicators and immune infiltration in patients with ESCC (n=82).
We constructed a prognostic model using methylation-related regulators homocysteine-inducible ER protein with ubiquitin-like domain 1 (), trans-2,3-enoyl-CoA reductase (), melanoma antigen gene A11 (), and NOP2/Sun RNA methyltransferase 6 () to evaluate the prognosis of patients with ESCC. A higher prognostic risk score was associated with shorter overall survival (OS) in patients with ESCC [hazard ratio (HR) =5.77, 95% confidence interval (CI): 2.13-15.58; P<0.001]. Time-dependent area under the curve (AUC) analysis revealed that , and had high prognostic predictive value at different time points. Furthermore, we found that the combined diagnostic model based on , and had excellent diagnostic efficacy for ESCC (AUC =0.911; 95% CI: 0.888-0.935). Finally, the ssGSEA algorithm showed that was significantly positively correlated with immune infiltration at both the cellular and genetic levels, while showed a significant negative correlation with immune infiltration levels.
Our prognostic model, built with the methylation-related regulators , and , could effectively predict prognosis in patients with ESCC, enhance diagnostic efficacy, and reflect immune cell infiltration in their microenvironment. Our findings are hypothesis generating and larger confirmatory studies are needed to validate our results.
甲基化相关调节因子可能参与食管鳞状细胞癌(ESCC)的预后预测。我们的研究旨在应用生物信息学筛选甲基化相关调节因子,构建ESCC患者的预后模型,并评估其诊断价值以及与免疫浸润的相关性。
从癌症基因组图谱(TCGA)数据库中鉴定出与预后相关的基因。使用基因卡片数据库筛选与甲基化相关的基因。我们使用最小绝对收缩和选择算子(LASSO)以及Cox比例风险回归来确定预后指标。我们应用单样本基因集富集分析(ssGSEA)来阐明ESCC患者(n = 82)中预后指标与免疫浸润之间的关系。
我们使用甲基化相关调节因子含泛素样结构域1的同型半胱氨酸诱导型内质网蛋白、反式-2,3-烯酰辅酶A还原酶、黑色素瘤抗原基因A11和NOP2 / Sun RNA甲基转移酶6构建了一个预后模型,以评估ESCC患者的预后。ESCC患者中较高的预后风险评分与较短的总生存期(OS)相关[风险比(HR)= 5.77,95%置信区间(CI):2.13 - 15.58;P <0.001]。时间依赖性曲线下面积(AUC)分析显示,在不同时间点,和具有较高的预后预测价值。此外,我们发现基于、和的联合诊断模型对ESCC具有出色的诊断效能(AUC = 0.911;95%CI:0.888 - 0.935)。最后,ssGSEA算法表明,在细胞和基因水平上均与免疫浸润呈显著正相关,而与免疫浸润水平呈显著负相关。
我们用甲基化相关调节因子、和构建的预后模型可以有效地预测ESCC患者的预后,提高诊断效能,并反映其微环境中的免疫细胞浸润。我们的发现具有假设生成性,需要更大规模的验证性研究来验证我们的结果。