Suppr超能文献

食管癌创新性预后模型研究:利用 scRNA-seq 和 bulk-RNA 分析树突状细胞异质性。

Innovative prognostic modeling in ESCC: leveraging scRNA-seq and bulk-RNA for dendritic cell heterogeneity analysis.

机构信息

Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China.

出版信息

Front Immunol. 2024 Mar 6;15:1352454. doi: 10.3389/fimmu.2024.1352454. eCollection 2024.

Abstract

BACKGROUND

Globally, esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type, characterized by its notably high rates of occurrence and mortality. Recent advancements in treatment methods, including immunotherapy, have shown promise, yet the prognosis remains poor. In the context of tumor development and treatment outcomes, the tumor microenvironment (TME), especially the function of dendritic cells (DCs), is significantly influential. Our study aims to delve deeper into the heterogeneity of DCs in ESCC using single-cell RNA sequencing (scRNA-seq) and bulk RNA analysis.

METHODS

In the scRNA-seq analysis, we utilized the SCP package for result visualization and functional enrichment analysis of cell subpopulations. CellChat was employed to identify potential oncogenic mechanisms in DCs, while Monocle 2 traced the evolutionary trajectory of the three DC subtypes. CopyKAT assessed the benign or malignant nature of cells, and SCENIC conducted transcription factor regulatory network analysis, offering a preliminary exploration of DC heterogeneity. In Bulk-RNA analysis, we constructed a prognostic model for ESCC prognosis and immunotherapy response, based on DC marker genes. This model was validated through quantitative PCR (qPCR) and immunohistochemistry (IHC), confirming the gene expression levels.

RESULTS

In this study, through intercellular communication analysis, we identified GALECTIN and MHC-I signaling pathways as potential oncogenic mechanisms within dendritic cells. We categorized DCs into three subtypes: plasmacytoid (pDC), conventional (cDC), and tolerogenic (tDC). Our findings revealed that pDCs exhibited an increased proportion of cells in the G2/M and S phases, indicating enhanced cellular activity. Pseudotime trajectory analysis demonstrated that cDCs were in early stages of differentiation, whereas tDCs were in more advanced stages, with pDCs distributed across both early and late differentiation phases. Prognostic analysis highlighted a significant correlation between pDCs and tDCs with the prognosis of ESCC (P< 0.05), while no significant correlation was observed between cDCs and ESCC prognosis (P = 0.31). The analysis of cell malignancy showed the lowest proportion of malignant cells in cDCs (17%), followed by pDCs (29%), and the highest in tDCs (48%), with these results being statistically significant (P< 0.05). We developed a robust ESCC prognostic model based on marker genes of pDCs and tDCs in the GSE53624 cohort (n = 119), which was validated in the TCGA-ESCC cohort (n = 139) and the IMvigor210 immunotherapy cohort (n = 298) (P< 0.05). Additionally, we supplemented the study with a novel nomogram that integrates clinical features and risk assessments. Finally, the expression levels of genes involved in the model were validated using qPCR (n = 8) and IHC (n = 16), thereby confirming the accuracy of our analysis.

CONCLUSION

This study enhances the understanding of dendritic cell heterogeneity in ESCC and its impact on patient prognosis. The insights gained from scRNA-seq and Bulk-RNA analysis contribute to the development of novel biomarkers and therapeutic targets. Our prognostic models based on DC-related gene signatures hold promise for improving ESCC patient stratification and guiding treatment decisions.

摘要

背景

在全球范围内,食管鳞状细胞癌(ESCC)是一种常见的癌症类型,其发病率和死亡率都很高。最近,免疫疗法等治疗方法的进展显示出了希望,但预后仍然很差。在肿瘤发展和治疗结果方面,肿瘤微环境(TME),尤其是树突状细胞(DC)的功能,具有显著的影响。我们的研究旨在使用单细胞 RNA 测序(scRNA-seq)和批量 RNA 分析深入研究 ESCC 中 DC 的异质性。

方法

在 scRNA-seq 分析中,我们使用 SCP 包进行结果可视化和细胞亚群的功能富集分析。CellChat 用于识别 DC 中的潜在致癌机制,而 Monocle 2 追踪了三个 DC 亚型的进化轨迹。CopyKAT 评估细胞的良性或恶性性质,SCENIC 进行转录因子调控网络分析,初步探索 DC 的异质性。在 Bulk-RNA 分析中,我们基于 DC 标记基因构建了 ESCC 预后和免疫治疗反应的预后模型。通过定量 PCR(qPCR)和免疫组织化学(IHC)进行验证,确认基因表达水平。

结果

在这项研究中,通过细胞间通讯分析,我们确定了半乳糖凝集素和 MHC-I 信号通路是树突状细胞内潜在的致癌机制。我们将 DC 分为三种亚型:浆细胞样(pDC)、经典(cDC)和耐受(tDC)。我们的研究结果表明,pDC 中处于 G2/M 和 S 期的细胞比例增加,表明细胞活性增强。拟时轨迹分析表明 cDC 处于早期分化阶段,而 tDC 处于更晚期的分化阶段,pDC 分布在早期和晚期分化阶段。预后分析表明,pDC 和 tDC 与 ESCC 的预后有显著相关性(P<0.05),而 cDC 与 ESCC 预后无显著相关性(P=0.31)。细胞恶性程度分析表明,cDC 中的恶性细胞比例最低(17%),其次是 pDC(29%),tDC 最高(48%),这些结果具有统计学意义(P<0.05)。我们基于 GSE53624 队列中的 pDC 和 tDC 标记基因开发了一个强大的 ESCC 预后模型(n=119),并在 TCGA-ESCC 队列(n=139)和 IMvigor210 免疫治疗队列(n=298)中进行了验证(P<0.05)。此外,我们补充了一个新的列线图,该列线图结合了临床特征和风险评估。最后,我们使用 qPCR(n=8)和 IHC(n=16)验证了模型中涉及的基因的表达水平,从而证实了我们分析的准确性。

结论

本研究提高了对 ESCC 中树突状细胞异质性及其对患者预后影响的认识。scRNA-seq 和 Bulk-RNA 分析的结果有助于开发新的生物标志物和治疗靶点。我们基于 DC 相关基因特征的预后模型有望改善 ESCC 患者的分层和指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8b/10956130/8c68b70fd1f4/fimmu-15-1352454-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验