He Yu, Guo Jiaqi, Wang Xiaoli, Wu Zhen, Wang Tao, Wang Mingshu, Jia Renyong, Zhu Dekang, Liu Mafeng, Zhao Xinxin, Yang Qiao, Wu Ying, Zhang Shaqiu, Huang Juan, Ou Xumin, Sun Di, Cheng Anchun, Chen Shun
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.
Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
J Virol. 2025 Jun 17;99(6):e0030825. doi: 10.1128/jvi.00308-25. Epub 2025 May 22.
Tembusu virus (TMUV), an emerging avian orthoflavivirus, causes severe egg-drop syndrome and encephalitis in ducks. Although ducks are the natural host, mice serve as a valuable model for studying neuropathogenesis, as TMUV-infected mice recapitulate key neurological symptoms observed in ducks, such as paralysis and encephalitis. In the previous study, we observed that the TMUV strain CQW1 exhibited unexpectedly low neurovirulence in mice compared with earlier strains, highlighting potential genetic determinants of pathogenicity that may influence viral evolution and disease outcomes in natural hosts. In this study, we investigated the murine neurovirulence of TMUV strains from two major phylogenetic clusters (2.1 and 2.2). The Cluster 2.2 strain CHN-YC demonstrated markedly higher neurovirulence in Kunming mice than Cluster 2.1 strains (CQW1 and SCS01), with robust viral replication in the brain, pronounced histopathological damage, and elevated proinflammatory cytokine levels. Comparative genomic analysis identified seven amino acid substitutions in the E-NS1 region, with variations unique to Cluster 2.1 strains or specific to CQW1. By introducing these substitutions into CQW1 via reverse genetics, we restored high murine neurovirulence and identified the E protein substitution V487A as critical for this phenotype. Mechanistically, E-V487A enhances viral assembly, which boosts replication efficiency and . This substitution is located in the E protein transmembrane domain, a region implicated in flavivirus particle formation. Our data revealed that a naturally occurring amino acid substitution located in the transmembrane domain of the Tembusu virus E protein is responsible for its high neurovirulence in mice.
Tembusu virus is a mosquito-borne avian orthoflavivirus, exhibiting airborne transmission. Although it primarily affects domestic fowl, TMUV demonstrates high neurovirulence in mice during laboratory studies and has been reported to spill over into humans. Recent years have seen increased genetic diversity and an expanded host range of the virus. Strains belonging to phylogenetic cluster 3 can cause severe neurological symptoms and death in mice via intranasal infection, further highlighting its risk of potential transmission to mammals. Understanding their pathogenicity and the underlying molecular basis is crucial for assessing and preventing health risks to mammals. We identified a single amino acid substitution in the TMUV E protein that critically enhances viral replication and neurovirulence in mice. The data provide insights into the molecular mechanisms of Tembusu virus pathogenesis in mammals and underscore the impact of specific genetic mutations on the viral phenotype.
坦布苏病毒(TMUV)是一种新出现的禽正黄病毒,可导致鸭出现严重的产蛋下降综合征和脑炎。尽管鸭是其自然宿主,但小鼠是研究神经发病机制的宝贵模型,因为感染TMUV的小鼠会重现鸭身上观察到的关键神经症状,如麻痹和脑炎。在之前的研究中,我们观察到与早期毒株相比,TMUV毒株CQW1在小鼠中的神经毒力出人意料地低,这突出了可能影响自然宿主中病毒进化和疾病结果的致病性潜在遗传决定因素。在本研究中,我们调查了来自两个主要系统发育簇(2.1和2.2)的TMUV毒株的小鼠神经毒力。2.2簇毒株CHN-YC在昆明小鼠中表现出明显高于2.1簇毒株(CQW1和SCS01)的神经毒力,在脑中具有强劲的病毒复制、明显的组织病理学损伤以及升高的促炎细胞因子水平。比较基因组分析在E-NS1区域鉴定出七个氨基酸替换,其中有2.1簇毒株特有的变异或CQW1特有的变异。通过反向遗传学将这些替换引入CQW1,我们恢复了高小鼠神经毒力,并确定E蛋白替换V487A对该表型至关重要。从机制上讲,E-V487A增强病毒组装,从而提高复制效率。该替换位于E蛋白跨膜结构域,这是一个与黄病毒颗粒形成有关的区域。我们的数据表明,坦布苏病毒E蛋白跨膜结构域中的一个自然发生的氨基酸替换导致其在小鼠中具有高神经毒力。
坦布苏病毒是一种蚊媒传播的禽正黄病毒,具有空气传播性。尽管它主要影响家禽,但TMUV在实验室研究中在小鼠中表现出高神经毒力,并且据报道已传播给人类。近年来,该病毒的遗传多样性增加,宿主范围扩大。属于系统发育簇3的毒株可通过鼻内感染在小鼠中引起严重的神经症状和死亡,进一步突出了其向哺乳动物潜在传播的风险。了解它们的致病性和潜在分子基础对于评估和预防对哺乳动物的健康风险至关重要。我们在TMUV E蛋白中鉴定出一个单一氨基酸替换,该替换关键地增强了病毒在小鼠中的复制和神经毒力。这些数据为坦布苏病毒在哺乳动物中的发病机制分子机制提供了见解,并强调了特定基因突变对病毒表型的影响。