Suppr超能文献

植物线粒体中的基因组修饰

Genome modification in plant mitochondria.

作者信息

Forner Joachim

机构信息

Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Abteilung 3, Am Muehlenberg 1, Potsdam D-14476, Germany.

出版信息

Plant Physiol. 2025 May 30;198(2). doi: 10.1093/plphys/kiaf197.

Abstract

Mitochondria are an indispensable component of every plant cell and are inextricably linked to many vital functions. One of their key characteristics is that they have their own genome. This genome, although greatly reduced, encodes several essential genes. While this has been known for decades, until recently it has not been possible to study the mitochondrial genome and its function in detail due to the lack of suitable tools for forward and reverse genetics. This is partly due to the low mutation rate in mitochondria and the lack of methods for direct transformation. A breakthrough came with the use of nuclear encoded transcription activator-like effector (TALE) nucleases (TALENs) for targeted mitochondrial mutagenesis. One of the first applications was to unambiguously show that certain ORFs were causal for cytoplasmic male sterility (CMS). This had previously been beyond our technical capabilities. TALENs are suitable for all plant species amenable to nuclear transformation because they are protein-only and can be imported post-transcriptionally into the mitochondria. Unfortunately, TALEN mutagenesis in plant mitochondria often seems to be associated with large genomic rearrangements. DNA base editors, the latest addition to the toolbox, bypass these side effects and merely introduce point mutations. They are based on TALEs and could only be developed after the discovery of a cytosine deaminase that acts on double-stranded DNA. The possibilities for targeted modification of the mitochondrial genome in plants are developing rapidly. This article aims to show where we stand in this development and what we can expect in the near future.

摘要

线粒体是每个植物细胞不可或缺的组成部分,与许多重要功能紧密相连。其关键特征之一是拥有自己的基因组。这个基因组虽大幅缩减,但仍编码多个必需基因。尽管这已为人所知数十年,但由于缺乏适用于正向和反向遗传学的合适工具,直到最近才有可能详细研究线粒体基因组及其功能。部分原因是线粒体中的突变率低以及缺乏直接转化方法。随着用于靶向线粒体诱变的核编码转录激活样效应物(TALE)核酸酶(TALENs)的使用,取得了突破。首批应用之一是明确表明某些开放阅读框(ORF)是细胞质雄性不育(CMS)的原因。这在以前超出了我们的技术能力。TALENs适用于所有适合核转化的植物物种,因为它们仅为蛋白质,可在转录后导入线粒体。不幸的是,植物线粒体中的TALEN诱变似乎常常与大规模基因组重排相关。DNA碱基编辑器是工具库中的最新成员,可避免这些副作用,仅引入点突变。它们基于TALE,并且只有在发现作用于双链DNA的胞嘧啶脱氨酶后才能开发出来。植物中线粒体基因组靶向修饰的可能性正在迅速发展。本文旨在展示我们在这一发展中的现状以及在不久的将来可以期待什么。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f10/12168157/6c7df89921b6/kiaf197f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验