Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan.
Plant Physiol. 2024 Mar 29;194(4):2278-2287. doi: 10.1093/plphys/kiad678.
Plastids and mitochondria are 2 intracellular organelles containing DNA-encoding partial but essential components for their roles, photosynthesis, and respiration. Precise base editing in both plastid and mitochondrial genomes would benefit their gene functional analysis and crop breeding. Targeted base editing in organellar genomes relies on a protein-based genome-editing system that uses the TALE-DNA recognition motif with deaminases. This is because the efficient delivery of guide RNA for clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems into organelles is currently impossible. Since TALE-based base editors used in organellar genomes are usually dimeric types, in this study, we used targeted A-to-G base editing in Arabidopsis (Arabidopsis thaliana) plastid and mitochondrial genomes with monomeric TALE-based deaminase for easier assembling of vectors. As a result, inheritable targeted A-to-G base editing of adenosine triphosphatase subunit 6-2 (atp6-2) in plant mitochondrial genomes and of 16S ribosomal RNA (16S rRNA) in plastid genomes of Arabidopsis was successfully induced by monomeric TALE-based adenine deaminase (AD) without off-target mutations. The monomeric TALE-based adenine deaminases also demonstrated a preference for editing the 8th T on the same strand from the recognition end. Phenotypic analysis showed that A-to-G conversion at 1139A of plastid 16S rRNA conferred substantial spectinomycin resistance in Arabidopsis, but not the other 2 potential-resistant mutations at 1131T and 1137T, predicted from the previous bacterial data. Our study demonstrated the feasibility of monomeric TALE-based ADs in plant organelles and their potential contribution to the functional analyses of plant organelles with easier assembling.
质体和线粒体是两种含有 DNA 的细胞内细胞器,其 DNA 编码部分但对于它们的功能至关重要的成分,光合作用和呼吸作用。在质体和线粒体基因组中进行精确的碱基编辑将有益于它们的基因功能分析和作物育种。依赖于基于蛋白质的基因组编辑系统的细胞器基因组中的靶向碱基编辑使用 TALE-DNA 识别基序与脱氨酶。这是因为目前不可能将 CRISPR/Cas9 系统的指导 RNA 有效递送到细胞器中。由于用于细胞器基因组的基于 TALE 的碱基编辑器通常是二聚体类型,因此在这项研究中,我们使用单体 TALE 基脱氨酶在拟南芥(Arabidopsis thaliana)质体和线粒体基因组中进行靶向 A 到 G 的碱基编辑,以更轻松地组装载体。结果,成功诱导了单体 TALE 基腺嘌呤脱氨酶(AD)在植物线粒体基因组中的 ATP 酶亚基 6-2(atp6-2)和质体基因组中的 16S 核糖体 RNA(16S rRNA)的可遗传靶向 A 到 G 碱基编辑,而没有脱靶突变。单体 TALE 基腺嘌呤脱氨酶还表现出对从识别端的同一链上编辑第 8 个 T 的偏好。表型分析表明,质体 16S rRNA 中的 1139A 处的 A 到 G 转换赋予拟南芥中相当大的壮观霉素抗性,但不是其他 2 个潜在抗性突变 1131T 和 1137T,这是根据先前的细菌数据预测的。我们的研究证明了单体 TALE 基 AD 在植物细胞器中的可行性,以及它们在更容易组装的植物细胞器功能分析中的潜在贡献。