Zakem Emily J, McNichol Jesse, Weissman J L, Raut Yubin, Xu Liang, Halewood Elisa R, Carlson Craig A, Dutkiewicz Stephanie, Fuhrman Jed A, Levine Naomi M
Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada.
Science. 2025 May 22;388(6749):eado5323. doi: 10.1126/science.ado5323.
Heterotrophic bacteria and archaea ("heteroprokaryotes") drive global carbon cycling, but how to quantitatively organize their functional complexity remains unclear. We generated a global-scale understanding of marine heteroprokaryotic functional biogeography by synthesizing genetic sequencing data with a mechanistic marine ecosystem model. We incorporated heteroprokaryotic diversity into the trait-based model along two axes: substrate lability and growth strategy. Using genetic sequences along three ocean transects, we compiled 21 heteroprokaryotic guilds and estimated their degree of optimization for rapid growth (copiotrophy). Data and model consistency indicated that gradients in grazing and substrate lability predominantly set biogeographical patterns, and we identified deep-ocean "slow copiotrophs" whose ecological interactions control the surface accumulation of dissolved organic carbon.
异养细菌和古菌(“异养原核生物”)驱动着全球碳循环,但如何定量梳理它们的功能复杂性仍不清楚。我们通过将基因测序数据与一个海洋生态系统机制模型相结合,对海洋异养原核生物功能生物地理学形成了全球尺度的理解。我们沿着两个轴将异养原核生物多样性纳入基于性状的模型:底物易分解性和生长策略。利用沿三条海洋断面的基因序列,我们编制了21个异养原核生物类群,并估计了它们快速生长(富营养型)的优化程度。数据与模型的一致性表明,捕食和底物易分解性的梯度主要决定了生物地理格局,并且我们识别出了深海“慢速富营养型生物”,其生态相互作用控制着溶解有机碳在表层的积累。