Cruz-Zaragoza Luis Daniel, Dahal Drishan, Koschel Mats, Boshnakovska Angela, Zheenbekova Aiturgan, Yilmaz Mehmet, Morgenstern Marcel, Dohrke Jan-Niklas, Bender Julian, Valpadashi Anusha, Henningfeld Kristine A, Oeljeklaus Silke, Kremer Laura Sophie, Breuer Mirjam, Urbach Oliver, Dennerlein Sven, Lidschreiber Michael, Jakobs Stefan, Warscheid Bettina, Rehling Peter
Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Science. 2025 Jul 31;389(6759):eadr3498. doi: 10.1126/science.adr3498.
Mitochondria fulfill central functions in metabolism and energy supply. They express their own genome, which encodes key subunits of the oxidative phosphorylation system. However, the central mechanisms underlying mitochondrial gene expression remain enigmatic, and a lack of suitable technologies to target mitochondrial protein synthesis in cells has limited experimental access. We silenced the translation of specific mitochondrial mRNAs in living human cells by delivering synthetic peptide-morpholino chimeras. This approach allowed us to perform a comprehensive temporal monitoring of cellular responses. Our study provides insights into mitochondrial translation, its integration into cellular physiology, and provides a strategy to address mitochondrial gene expression in living cells. The approach can potentially be used to analyze mechanisms and pathophysiology of mitochondrial gene expression in a range of cellular model systems.
线粒体在新陈代谢和能量供应中发挥着核心作用。它们表达自己的基因组,该基因组编码氧化磷酸化系统的关键亚基。然而,线粒体基因表达的核心机制仍然神秘莫测,并且缺乏在细胞中靶向线粒体蛋白质合成的合适技术限制了实验研究。我们通过递送合成肽 - 吗啉代嵌合体来沉默活的人类细胞中特定线粒体mRNA的翻译。这种方法使我们能够对细胞反应进行全面的时间监测。我们的研究深入了解了线粒体翻译及其与细胞生理学的整合,并提供了一种在活细胞中研究线粒体基因表达的策略。该方法有可能用于分析一系列细胞模型系统中线粒体基因表达的机制和病理生理学。