Suppr超能文献

通过计算机模拟工具、RNA测序以及GFM1基因敲除细胞中的线粒体自噬途径评估GFM1突变的致病性。

Evaluation of GFM1 mutations pathogenicity through in silico tools, RNA sequencing and mitophagy pahtway in GFM1 knockout cells.

作者信息

Ahmad Bashir, Dumbuya John Sieh, Li Wen, Tang Ji-Xin, Chen Xiuling, Lu Jun

机构信息

Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China.

Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.

出版信息

Int J Biol Macromol. 2025 Apr;304(Pt 2):140970. doi: 10.1016/j.ijbiomac.2025.140970. Epub 2025 Feb 12.

Abstract

GFM1 is a nuclear gene that plays a role in mitochondrial function. In recent decades, various homozygous and compound heterozygous mutations have been identified, leading to significant health issues in patients and often resulting in early death. There is a few experimental research on this gene, particularly regarding its pathogenicity through in silico methods and RNA sequencing and experimental validation in GFM1 knockout cells. This study aims to explore how high-risk pathogenic variants affect protein stability and function using a comprehensive bioinformatics approach. Analyses with Align-GVGD, PolyPhen-2, MupRo, and SIFT indicated that most variants are likely to be highly pathogenic and destabilize the protein structure. The variants were consistently classified as high-risk by Align-GVGD and were deemed "probably damaging" or "possibly damaging" by PolyPhen-2. MupRo analysis suggested a reduction in protein stability, while SIFT indicated functional impacts for all variants. Further analysis with MetaRNN and structural assessments showed that these variants affect protein size, charge, and hydrophobicity, which may disrupt inter-domain interactions and hinder protein function. Differential gene expression analysis in GFM1 knockout HK2 and 293 T cells revealed significant changes in gene expression, particularly in areas related to translation, mitochondrial function, and cellular responses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the affected genes are linked to neurodegenerative diseases, cancer, and various signaling pathways. GFM1 knockout cells displayed notable pathway changes, including those related to oxidative phosphorylation and neurodegenerative diseases (e.g., Parkinson's, Alzheimer's, Huntington's). Upregulation of mitochondrial electron transport chain components (COX17, NDUFB1, ATP5MC1) suggests a compensatory mechanism in response to impaired mitochondrial function. Disruptions in proteostasis and protein synthesis were highlighted by dysregulated proteasome and ribosomal pathways. Markers of mitophagy, such as increased HSP90 and decreased TOMM20 levels, along with changes in PINK1 protein, emphasize GFM1's involvement in mitophagy. Protein-protein interaction analysis connected GFM1 to key mitophagy proteins (e.g., OPTN, Park2/Parkin). Functional experiments confirmed increased mitophagy, indicating a protective response. These results highlight the negative impact of high-risk pathogenic variants on protein stability and cellular function, shedding light on their potential roles in disease progression. This study offers valuable insights into the pathogenic mechanisms linked to GFM1 mutations, underscoring its critical role in mitochondrial function and cellular balance. The findings highlight the gene's involvement in mitophagy, oxidative phosphorylation, and neurodegenerative pathways, laying the groundwork for future research into therapeutic approaches targeting GFM1-related dysfunctions.

摘要

GFM1是一个在线粒体功能中发挥作用的核基因。近几十年来,已经鉴定出各种纯合和复合杂合突变,这些突变给患者带来了严重的健康问题,并常常导致过早死亡。关于这个基因的实验研究较少,特别是通过计算机方法、RNA测序以及在GFM1基因敲除细胞中的实验验证来研究其致病性。本研究旨在使用综合生物信息学方法探索高风险致病变体如何影响蛋白质稳定性和功能。通过Align-GVGD、PolyPhen-2、MupRo和SIFT分析表明,大多数变体可能具有高度致病性并使蛋白质结构不稳定。Align-GVGD始终将这些变体分类为高风险,而PolyPhen-2则认为它们“可能有害”或“可能有害”。MupRo分析表明蛋白质稳定性降低,而SIFT表明所有变体都有功能影响。使用MetaRNN和结构评估进行的进一步分析表明,这些变体影响蛋白质的大小、电荷和疏水性,这可能会破坏结构域间的相互作用并阻碍蛋白质功能。对GFM1基因敲除的HK2和293 T细胞进行的差异基因表达分析显示基因表达有显著变化,特别是在与翻译、线粒体功能和细胞反应相关的区域。基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析表明,受影响的基因与神经退行性疾病、癌症和各种信号通路有关。GFM1基因敲除细胞显示出明显的通路变化,包括与氧化磷酸化和神经退行性疾病(如帕金森病、阿尔茨海默病、亨廷顿病)相关的变化。线粒体电子传递链成分(COX17、NDUFB1、ATP5MC1)的上调表明是对线粒体功能受损的一种补偿机制。蛋白酶体和核糖体通路失调突出了蛋白质稳态和蛋白质合成的破坏。线粒体自噬标记物,如HSP90增加和TOMM20水平降低,以及PINK1蛋白的变化,强调了GFM1参与线粒体自噬。蛋白质-蛋白质相互作用分析将GFM1与关键的线粒体自噬蛋白(如OPTN、Park2/Parkin)联系起来。功能实验证实线粒体自噬增加,表明这是一种保护反应。这些结果突出了高风险致病变体对蛋白质稳定性和细胞功能的负面影响,揭示了它们在疾病进展中的潜在作用。本研究为与GFM1突变相关的致病机制提供了有价值的见解,强调了其在线粒体功能和细胞平衡中的关键作用。研究结果突出了该基因参与线粒体自噬、氧化磷酸化和神经退行性通路,为未来针对GFM1相关功能障碍的治疗方法研究奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验