Suppr超能文献

基于DNA逻辑电路的非线性分类器用于癌症诊断

Nonlinear Classifiers Based on DNA Logic Circuits for Cancer Diagnosis.

作者信息

Chen Chunlin, Yin Zhixiang, Li Shiyin, Lian Wenhui, Tang Zhen

机构信息

School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.

Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.

出版信息

ACS Synth Biol. 2025 Jun 20;14(6):2208-2218. doi: 10.1021/acssynbio.5c00129. Epub 2025 May 22.

Abstract

DNA logical circuits can be applied to accurate classification of cancer status, benefiting from their excellent biocompatibility and parallelism. However, the existing cancer diagnosis models based on DNA logic circuits mainly adopt a linear structure, which makes it difficult to fully capture the complex nonlinear distribution characteristics in the disease data. In addition, DNA logic circuits cannot directly sense the expression levels of microRNAs (miRNAs). Here, we constructed a nonlinear classifier based on DNA logic circuits with the random forest algorithm. The classifier can directly sense the expression level of miRNAs in serum samples without isolating specific miRNAs and transmit the signals to the logic classification module and complete the nonlinear classification of cancer status. We validated the classification performance of the constructed nonlinear classifiers by using miRNA expression level samples to diagnose adenocarcinoma, ductal and lobular neoplasms, and squamous cell carcinoma with accuracies of 95.4%, 96.6%, and 97.2%, respectively. The classification results generated using the nonlinear classifiers based on DNA logic circuits showed a strong agreement with the actual disease states labeled in TCGA, as well as with the random forest algorithm, and had high parallelism and stability in the multiclassification of three different cancers. This work shows the great potential of DNA logic circuit-based nonlinear classifiers in cancer diagnosis, which provides a new approach to design efficient, accurate, and intelligent integrated disease diagnosis schemes.

摘要

DNA逻辑电路凭借其出色的生物相容性和并行性,可应用于癌症状态的精确分类。然而,现有的基于DNA逻辑电路的癌症诊断模型主要采用线性结构,这使得难以充分捕捉疾病数据中复杂的非线性分布特征。此外,DNA逻辑电路无法直接感知微小RNA(miRNA)的表达水平。在此,我们利用随机森林算法构建了一种基于DNA逻辑电路的非线性分类器。该分类器无需分离特定的miRNA,就能直接感知血清样本中miRNA的表达水平,并将信号传输至逻辑分类模块,完成癌症状态的非线性分类。我们使用miRNA表达水平样本对腺癌、导管和小叶肿瘤以及鳞状细胞癌进行诊断,验证了所构建的非线性分类器的分类性能,其准确率分别为95.4%、96.6%和97.2%。基于DNA逻辑电路的非线性分类器生成的分类结果与TCGA中标记的实际疾病状态以及随机森林算法显示出高度一致性,并且在三种不同癌症的多分类中具有高并行性和稳定性。这项工作展示了基于DNA逻辑电路的非线性分类器在癌症诊断中的巨大潜力,为设计高效、准确和智能的综合疾病诊断方案提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验