Suppr超能文献

通过患者使用大语言模型的经历识别肾结石风险因素:文本分析与实证研究

Identifying Kidney Stone Risk Factors Through Patient Experiences With a Large Language Model: Text Analysis and Empirical Study.

作者信息

Mao Chao, Li Jiaxuan, Pang Patrick Cheong-Iao, Zhu Quanjing, Chen Rong

机构信息

MPU-UC Joint Research Laboratory in Advanced Technologies for Smart Cities, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao.

Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.

出版信息

J Med Internet Res. 2025 May 22;27:e66365. doi: 10.2196/66365.

Abstract

BACKGROUND

Kidney stones, a prevalent urinary disease, pose significant health risks. Factors like insufficient water intake or a high-protein diet increase an individual's susceptibility to the disease. Social media platforms can be a valuable avenue for users to share their experiences in managing these risk factors. Analyzing such patient-reported information can provide crucial insights into risk factors, potentially leading to improved quality of life for other patients.

OBJECTIVE

This study aims to develop a model KSrisk-GPT, based on a large language model (LLM) to identify potential kidney stone risk factors from web-based user experiences.

METHODS

This study collected data on the topic of kidney stones on Zhihu in the past 5 years and obtained 11,819 user comments. Experts organized the most common risk factors for kidney stones into six categories. Then, we use the least-to-most prompting in the chain-of-thought prompting to enable GPT-4.0 to think like an expert and ask GPT to identify risk factors from the comments. Metrics, including accuracy, precision, recall, and F-score, were used to evaluate the performance of such a model.

RESULTS

Our proposed method outperforms other models in identifying comments containing risk factors with 95.9% accuracy and F-score, with a precision of 95.6% and a recall of 96.2%. Out of the 863 comments identified with risk factors, our analysis showed the most mentioned risk factors for kidney stones in Zhihu user discussions, mainly including dietary habits (high protein, high calcium intake), insufficient water intake, genetic factors, and lifestyle. In addition, new potential risk factors were discovered with GPT, such as excessive use of supplements like vitamin C and calcium, laxatives, and hyperparathyroidism.

CONCLUSIONS

Comments from social media users offer a new data source for disease prevention and understanding patient journeys. Our method not only sheds light on using LLMs to efficiently summarize risk factors from social media data but also on LLMs' potential to identify new potential factors from the patient's perspective.

摘要

背景

肾结石是一种常见的泌尿系统疾病,会带来重大健康风险。饮水不足或高蛋白饮食等因素会增加个体患该疾病的易感性。社交媒体平台对于用户分享管理这些风险因素的经验而言是一个有价值的渠道。分析此类患者报告的信息可为风险因素提供关键见解,有可能改善其他患者的生活质量。

目的

本研究旨在基于大语言模型(LLM)开发一个模型KSrisk - GPT,以从基于网络的用户体验中识别潜在的肾结石风险因素。

方法

本研究收集了过去5年知乎上关于肾结石主题的数据,获得了11,819条用户评论。专家将肾结石最常见的风险因素归纳为六类。然后,我们在思维链提示中使用从少到多提示,使GPT - 4.0能够像专家一样思考,并要求GPT从评论中识别风险因素。使用包括准确率、精确率、召回率和F值在内的指标来评估该模型的性能。

结果

我们提出的方法在识别包含风险因素的评论方面优于其他模型,准确率和F值为95.9%,精确率为95.6%,召回率为96.2%。在识别出的863条有风险因素的评论中,我们的分析显示了知乎用户讨论中提及最多的肾结石风险因素,主要包括饮食习惯(高蛋白、高钙摄入)、饮水不足、遗传因素和生活方式。此外,通过GPT发现了新的潜在风险因素,如过量使用维生素C和钙等补充剂、泻药以及甲状旁腺功能亢进。

结论

社交媒体用户的评论为疾病预防和了解患者历程提供了新的数据来源。我们的方法不仅阐明了使用大语言模型从社交媒体数据中有效总结风险因素,还揭示了大语言模型从患者角度识别新潜在因素的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5134/12141965/47bc10c6e2f3/jmir_v27i1e66365_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验