文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用大型语言模型从用户生成的日记文本数据中检测抑郁,作为数字心理健康筛查的新方法:仪器验证研究。

Using Large Language Models to Detect Depression From User-Generated Diary Text Data as a Novel Approach in Digital Mental Health Screening: Instrument Validation Study.

机构信息

Department of Psychiatry, Anam Hospital, Korea University, Seoul, Republic of Korea.

Doctorpresso, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2024 Sep 18;26:e54617. doi: 10.2196/54617.


DOI:10.2196/54617
PMID:39292502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11447422/
Abstract

BACKGROUND: Depressive disorders have substantial global implications, leading to various social consequences, including decreased occupational productivity and a high disability burden. Early detection and intervention for clinically significant depression have gained attention; however, the existing depression screening tools, such as the Center for Epidemiologic Studies Depression Scale, have limitations in objectivity and accuracy. Therefore, researchers are identifying objective indicators of depression, including image analysis, blood biomarkers, and ecological momentary assessments (EMAs). Among EMAs, user-generated text data, particularly from diary writing, have emerged as a clinically significant and analyzable source for detecting or diagnosing depression, leveraging advancements in large language models such as ChatGPT. OBJECTIVE: We aimed to detect depression based on user-generated diary text through an emotional diary writing app using a large language model (LLM). We aimed to validate the value of the semistructured diary text data as an EMA data source. METHODS: Participants were assessed for depression using the Patient Health Questionnaire and suicide risk was evaluated using the Beck Scale for Suicide Ideation before starting and after completing the 2-week diary writing period. The text data from the daily diaries were also used in the analysis. The performance of leading LLMs, such as ChatGPT with GPT-3.5 and GPT-4, was assessed with and without GPT-3.5 fine-tuning on the training data set. The model performance comparison involved the use of chain-of-thought and zero-shot prompting to analyze the text structure and content. RESULTS: We used 428 diaries from 91 participants; GPT-3.5 fine-tuning demonstrated superior performance in depression detection, achieving an accuracy of 0.902 and a specificity of 0.955. However, the balanced accuracy was the highest (0.844) for GPT-3.5 without fine-tuning and prompt techniques; it displayed a recall of 0.929. CONCLUSIONS: Both GPT-3.5 and GPT-4.0 demonstrated relatively reasonable performance in recognizing the risk of depression based on diaries. Our findings highlight the potential clinical usefulness of user-generated text data for detecting depression. In addition to measurable indicators, such as step count and physical activity, future research should increasingly emphasize qualitative digital expression.

摘要

背景:抑郁障碍在全球范围内具有重要意义,导致各种社会后果,包括职业生产力下降和高残疾负担。对于有临床意义的抑郁,早期发现和干预已经引起了关注;然而,现有的抑郁筛查工具,如流行病学研究中心抑郁量表,在客观性和准确性方面存在局限性。因此,研究人员正在寻找抑郁的客观指标,包括图像分析、血液生物标志物和生态瞬时评估(EMA)。在 EMAs 中,用户生成的文本数据,特别是来自日记写作的文本数据,已经成为一种具有临床意义和可分析的检测或诊断抑郁的来源,利用了 ChatGPT 等大型语言模型的进步。

目的:我们旨在通过使用大型语言模型(LLM)的情感日记写作应用程序,基于用户生成的日记文本检测抑郁。我们旨在验证半结构化日记文本数据作为 EMA 数据源的价值。

方法:参与者在开始和完成为期 2 周的日记写作期后,使用患者健康问卷(Patient Health Questionnaire)评估抑郁,使用贝克自杀意念量表(Beck Scale for Suicide Ideation)评估自杀风险。日常日记中的文本数据也用于分析。评估了领先的 LLM(如 ChatGPT 与 GPT-3.5 和 GPT-4)的性能,包括在训练数据集上进行 GPT-3.5 微调前后的性能。模型性能比较涉及使用思维链和零样本提示来分析文本结构和内容。

结果:我们使用了 91 名参与者的 428 篇日记;GPT-3.5 微调在抑郁检测方面表现出优异的性能,准确率为 0.902,特异性为 0.955。然而,GPT-3.5 未进行微调和提示技术的平衡准确性最高(0.844),其召回率为 0.929。

结论:GPT-3.5 和 GPT-4.0 都在基于日记识别抑郁风险方面表现出相对合理的性能。我们的发现强调了用户生成的文本数据用于检测抑郁的潜在临床价值。除了可衡量的指标,如步数和身体活动,未来的研究应该越来越强调定性的数字表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/1610b2286306/jmir_v26i1e54617_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/fe72a52c22b2/jmir_v26i1e54617_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/45b8f7ed865d/jmir_v26i1e54617_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/77bffaf6c03c/jmir_v26i1e54617_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/1610b2286306/jmir_v26i1e54617_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/fe72a52c22b2/jmir_v26i1e54617_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/45b8f7ed865d/jmir_v26i1e54617_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/77bffaf6c03c/jmir_v26i1e54617_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a75/11447422/1610b2286306/jmir_v26i1e54617_fig4.jpg

相似文献

[1]
Using Large Language Models to Detect Depression From User-Generated Diary Text Data as a Novel Approach in Digital Mental Health Screening: Instrument Validation Study.

J Med Internet Res. 2024-9-18

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[4]
Large Language Models and Empathy: Systematic Review.

J Med Internet Res. 2024-12-11

[5]
Large Language Models and Text Embeddings for Detecting Depression and Suicide in Patient Narratives.

JAMA Netw Open. 2025-5-1

[6]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[7]
Large Language Model Symptom Identification From Clinical Text: Multicenter Study.

J Med Internet Res. 2025-7-31

[8]
Aligning Large Language Models for Enhancing Psychiatric Interviews Through Symptom Delineation and Summarization: Pilot Study.

JMIR Form Res. 2024-10-24

[9]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[10]
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury.

Cochrane Database Syst Rev. 2016-7-1

引用本文的文献

[1]
Research progress and implications of the application of large language model in shared decision-making in China's healthcare field.

Front Public Health. 2025-7-10

[2]
The Application and Ethical Implication of Generative AI in Mental Health: Systematic Review.

JMIR Ment Health. 2025-6-27

[3]
Large Language Models in Medical Diagnostics: Scoping Review With Bibliometric Analysis.

J Med Internet Res. 2025-6-9

[4]
The Applications of Large Language Models in Mental Health: Scoping Review.

J Med Internet Res. 2025-5-5

[5]
Extracting Pulmonary Embolism Diagnoses From Radiology Impressions Using GPT-4o: Large Language Model Evaluation Study.

JMIR Med Inform. 2025-4-9

本文引用的文献

[1]
The now and future of ChatGPT and GPT in psychiatry.

Psychiatry Clin Neurosci. 2023-11

[2]
Utilizing daily mood diaries and wearable sensor data to predict depression and suicidal ideation among medical interns.

J Affect Disord. 2022-9-15

[3]
Detection of Depression and Suicide Risk Based on Text From Clinical Interviews Using Machine Learning: Possibility of a New Objective Diagnostic Marker.

Front Psychiatry. 2022-5-24

[4]
Digital phenotyping in depression diagnostics: Integrating psychiatric and engineering perspectives.

World J Psychiatry. 2022-3-19

[5]
On evaluation metrics for medical applications of artificial intelligence.

Sci Rep. 2022-4-8

[6]
Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review.

SN Comput Sci. 2022

[7]
Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling.

JMIR Mhealth Uhealth. 2021-10-25

[8]
Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts.

JAMIA Open. 2021-3-17

[9]
Discrepancies between self-rated depression and observed depression severity: The effects of personality and dysfunctional attitudes.

Gen Hosp Psychiatry. 2021

[10]
Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression.

IEEE J Biomed Health Inform. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索