Suppr超能文献

一种使用计算机断层扫描图像检测早期肺癌和慢性肾病的多类别深度学习模型。

A multi-class deep learning model for early lung cancer and chronic kidney disease detection using computed tomography images.

作者信息

Bhattacharjee Ananya, Rabea Sameh, Bhattacharjee Abhishek, Elkaeed Eslam B, Murugan R, Selim Heba Mohammed Refat M, Sahu Ram Kumar, Shazly Gamal A, Salem Bekhit Mounir M

机构信息

Bio-Medical Imaging Laboratory (BIOMIL), Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, India.

Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia.

出版信息

Front Oncol. 2023 Jun 2;13:1193746. doi: 10.3389/fonc.2023.1193746. eCollection 2023.

Abstract

Lung cancer is a fatal disease caused by an abnormal proliferation of cells in the lungs. Similarly, chronic kidney disorders affect people worldwide and can lead to renal failure and impaired kidney function. Cyst development, kidney stones, and tumors are frequent diseases impairing kidney function. Since these conditions are generally asymptomatic, early, and accurate identification of lung cancer and renal conditions is necessary to prevent serious complications. Artificial Intelligence plays a vital role in the early detection of lethal diseases. In this paper, we proposed a modified Xception deep neural network-based computer-aided diagnosis model, consisting of transfer learning based image net weights of Xception model and a fine-tuned network for automatic lung and kidney computed tomography multi-class image classification. The proposed model obtained 99.39% accuracy, 99.33% precision, 98% recall, and 98.67% F1-score for lung cancer multi-class classification. Whereas, it attained 100% accuracy, F1 score, recall and precision for kidney disease multi-class classification. Also, the proposed modified Xception model outperformed the original Xception model and the existing methods. Hence, it can serve as a support tool to the radiologists and nephrologists for early detection of lung cancer and chronic kidney disease, respectively.

摘要

肺癌是一种由肺部细胞异常增殖引起的致命疾病。同样,慢性肾脏疾病影响着全世界的人们,可能导致肾衰竭和肾功能受损。囊肿形成、肾结石和肿瘤是损害肾功能的常见疾病。由于这些病症通常没有症状,因此早期准确识别肺癌和肾脏疾病对于预防严重并发症至关重要。人工智能在致命疾病的早期检测中起着至关重要的作用。在本文中,我们提出了一种基于改进的Xception深度神经网络的计算机辅助诊断模型,该模型由基于Xception模型的迁移学习图像网络权重和一个用于自动进行肺部和肾脏计算机断层扫描多类图像分类的微调网络组成。所提出的模型在肺癌多类分类中获得了99.39%的准确率、99.33%的精确率、98%的召回率和98.67%的F1分数。而在肾脏疾病多类分类中,它获得了100%的准确率、F1分数、召回率和精确率。此外,所提出的改进Xception模型优于原始Xception模型和现有方法。因此,它可以分别作为放射科医生和肾病学家早期检测肺癌和慢性肾病的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232e/10272771/d82725a9b7f4/fonc-13-1193746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验