Suppr超能文献

基于自动地理信息系统驱动的非洲太阳能池塘选址用于水处理,符合水-能源-粮食关系框架。

AutoGIS-driven solar pond site selection for water treatment in Africa aligned with the NEXUS framework.

作者信息

Altahan Mahmoud Fatehy, Nower Mohamed

机构信息

Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Qanater El-Khairia, 13621, Egypt.

Water Management Research Institute (WMRI), National Water Research Center (NWRC), El-Qanater El-Khairia, 13621, Egypt.

出版信息

Sci Rep. 2025 May 22;15(1):17743. doi: 10.1038/s41598-025-01778-6.

Abstract

Access to clean and safe water remains a critical challenge across many regions in Africa. This study investigates the potential of solar ponds as wastewater treatment facilities by employing AutoGIS processing and DBSCAN clustering to identify suitable development sites across the African continent and its five regions: North, East, West, Central, and Southern Africa. By integrating environmental data such as solar radiation, wind speed, temperature, clear sky, cloud cover, and precipitation, this research highlights the effectiveness of geospatial tools in addressing clean water access issues. The findings reveal distinct suitability patterns for solar pond development at both continental and regional levels. Key environmental factors, notably direct normal radiation (DNR), temperature, and wind speed, consistently expanded the areas identified as suitable, while cloud cover demonstrated a positive effect. Precipitation showed minimal variation, particularly in Central Africa. Importantly, the study underscores the capability of DBSCAN clustering in handling large datasets, filtering noise, and capturing nuanced regional differences, which varied significantly from continent-wide trends. By streamlining the site selection process, this research offers practical insights into leveraging geospatial technologies to address water access challenges in Africa. The integration of AutoGIS and DBSCAN provides a scalable approach for analyzing complex environmental datasets, paving the way for more informed and sustainable development of wastewater treatment solutions across diverse regions.

摘要

在非洲的许多地区,获得清洁安全的水仍然是一项严峻的挑战。本研究通过运用自动地理信息系统(AutoGIS)处理和密度基于空间聚类应用(DBSCAN)聚类来确定非洲大陆及其五个区域(北非、东非、西非、中非和南非)的合适开发地点,从而调查太阳能池作为废水处理设施的潜力。通过整合太阳辐射、风速、温度、晴空、云量和降水等环境数据,本研究突出了地理空间工具在解决清洁水获取问题方面的有效性。研究结果揭示了太阳能池开发在大陆和区域层面的不同适宜性模式。关键环境因素,特别是直接法向辐射(DNR)、温度和风速,持续扩大了被确定为合适的区域,而云量显示出积极影响。降水变化最小,尤其是在中非地区。重要的是,该研究强调了DBSCAN聚类在处理大型数据集、过滤噪声以及捕捉细微区域差异方面的能力,这些差异与全大陆趋势有显著不同。通过简化选址过程,本研究为利用地理空间技术应对非洲的水获取挑战提供了实用见解。AutoGIS和DBSCAN的整合提供了一种可扩展的方法来分析复杂的环境数据集,为不同地区更明智和可持续的废水处理解决方案发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c1d/12098993/a5307bd242c1/41598_2025_1778_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验