Suppr超能文献

二糖-匹马霉素的工程化生物合成及表征

Engineered biosynthesis and characterization of disaccharide-pimaricin.

作者信息

Zuo Xiaoshan, Qiao Liqin, Dong Yao, Jin Xing, Ren Zhongyuan, Cui Hao

机构信息

School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.

College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.

出版信息

Microb Cell Fact. 2025 May 22;24(1):121. doi: 10.1186/s12934-025-02742-9.

Abstract

BACKGROUND

Disaccharide polyene macrolides exhibit superior water solubility and significantly reduced hemolytic toxicity compared to their monosaccharide counterparts, making them promising candidates for safer antifungal therapeutics. In this study, we engineered a Streptomyces gilvosporeus (pSET152-nppY) capable of producing disaccharide-pimaricin (DSP) through heterologous expression of the nppY gene, which encodes a glycosyltransferase responsible for the second sugar extension in the biosynthetic pathway.

RESULTS

The novel compound was structurally characterized and designated disaccharide-pimaricin (DSP), featuring an aglycone identical to pimaricin and a unique disaccharide moiety (mycosaminyl-α1-4-N-acetylglucosamine). A purification protocol for DSP was established. Compared to pimaricin, DSP demonstrated a 50% reduction in antifungal activity, a 12.6-fold decrease in hemolytic toxicity, and a remarkable 107.6-fold increase in water solubility. Growth analysis revealed a delayed growth cycle in the mutant strain, suggesting that nppY expression may impose additional metabolic burden. Optimization of the fermentation medium using a statistical design identified an optimal formulation, with a maximum DSP titer of 138.168 mg/L.

CONCLUSIONS

This study underscores the potential of disaccharide polyene macrolides as safer antifungal agents and establishes a robust framework for engineering strains to produce these compounds. The findings provide critical insights into balancing biosynthetic efficiency and strain fitness, advancing the development of next-generation polyene antibiotics.

摘要

背景

与单糖多烯大环内酯类相比,二糖多烯大环内酯类具有更高的水溶性,溶血毒性显著降低,使其成为更安全抗真菌治疗药物的有前景候选物。在本研究中,我们通过异源表达nppY基因构建了一株能够产生二糖匹马霉素(DSP)的吉尔沃链霉菌(pSET152-nppY),该基因编码一种糖基转移酶,负责生物合成途径中的第二个糖基延伸。

结果

对该新型化合物进行了结构表征,并命名为二糖匹马霉素(DSP),其苷元与匹马霉素相同,具有独特的二糖部分(霉菌氨基糖基-α1-4-N-乙酰葡糖胺)。建立了DSP的纯化方案。与匹马霉素相比,DSP的抗真菌活性降低了50%,溶血毒性降低了12.6倍,水溶性显著增加了107.6倍。生长分析显示突变株的生长周期延迟,表明nppY表达可能带来额外的代谢负担。使用统计设计对发酵培养基进行优化,确定了最佳配方,DSP最高产量为138.168 mg/L。

结论

本研究强调了二糖多烯大环内酯类作为更安全抗真菌剂的潜力,并建立了一个强大的工程菌株框架来生产这些化合物。这些发现为平衡生物合成效率和菌株适应性提供了关键见解,推动了下一代多烯抗生素的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/799d/12100793/c11ae83c8c2e/12934_2025_2742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验