Zuo Xiaoshan, Qiao Liqin, Dong Yao, Jin Xing, Ren Zhongyuan, Cui Hao
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
Microb Cell Fact. 2025 May 22;24(1):121. doi: 10.1186/s12934-025-02742-9.
Disaccharide polyene macrolides exhibit superior water solubility and significantly reduced hemolytic toxicity compared to their monosaccharide counterparts, making them promising candidates for safer antifungal therapeutics. In this study, we engineered a Streptomyces gilvosporeus (pSET152-nppY) capable of producing disaccharide-pimaricin (DSP) through heterologous expression of the nppY gene, which encodes a glycosyltransferase responsible for the second sugar extension in the biosynthetic pathway.
The novel compound was structurally characterized and designated disaccharide-pimaricin (DSP), featuring an aglycone identical to pimaricin and a unique disaccharide moiety (mycosaminyl-α1-4-N-acetylglucosamine). A purification protocol for DSP was established. Compared to pimaricin, DSP demonstrated a 50% reduction in antifungal activity, a 12.6-fold decrease in hemolytic toxicity, and a remarkable 107.6-fold increase in water solubility. Growth analysis revealed a delayed growth cycle in the mutant strain, suggesting that nppY expression may impose additional metabolic burden. Optimization of the fermentation medium using a statistical design identified an optimal formulation, with a maximum DSP titer of 138.168 mg/L.
This study underscores the potential of disaccharide polyene macrolides as safer antifungal agents and establishes a robust framework for engineering strains to produce these compounds. The findings provide critical insights into balancing biosynthetic efficiency and strain fitness, advancing the development of next-generation polyene antibiotics.
与单糖多烯大环内酯类相比,二糖多烯大环内酯类具有更高的水溶性,溶血毒性显著降低,使其成为更安全抗真菌治疗药物的有前景候选物。在本研究中,我们通过异源表达nppY基因构建了一株能够产生二糖匹马霉素(DSP)的吉尔沃链霉菌(pSET152-nppY),该基因编码一种糖基转移酶,负责生物合成途径中的第二个糖基延伸。
对该新型化合物进行了结构表征,并命名为二糖匹马霉素(DSP),其苷元与匹马霉素相同,具有独特的二糖部分(霉菌氨基糖基-α1-4-N-乙酰葡糖胺)。建立了DSP的纯化方案。与匹马霉素相比,DSP的抗真菌活性降低了50%,溶血毒性降低了12.6倍,水溶性显著增加了107.6倍。生长分析显示突变株的生长周期延迟,表明nppY表达可能带来额外的代谢负担。使用统计设计对发酵培养基进行优化,确定了最佳配方,DSP最高产量为138.168 mg/L。
本研究强调了二糖多烯大环内酯类作为更安全抗真菌剂的潜力,并建立了一个强大的工程菌株框架来生产这些化合物。这些发现为平衡生物合成效率和菌株适应性提供了关键见解,推动了下一代多烯抗生素的开发。