Suppr超能文献

群体遗传学模拟中的参数缩放可能会引入意外的背景选择:缩放模拟设计的考量

Parameter Scaling in Population Genetics Simulations may Introduce Unintended Background Selection: Considerations for Scaled Simulation Design.

作者信息

Ferrari Tessa, Feng Siyuan, Zhang Xinjun, Mooney Jazlyn

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.

Laboratory of Genetics, University of Wisconsin, Madison, WI, USA.

出版信息

Genome Biol Evol. 2025 May 30;17(6). doi: 10.1093/gbe/evaf097.

Abstract

Scaling is a common practice in population genetic simulations to increase computational efficiency. However, few studies systematically examine the effects of scaling on diversity estimates and the comparability of scaled results to unscaled simulations and empirical data. We investigate the effects of scaling in two species, modern humans and Drosophila melanogaster. These species have stark differences in population size and generation time, necessitating moderate-to-no scaling for humans and dramatic scaling for Drosophila. We determine how coalescence, runtime, memory, estimates of diversity, the site frequency spectra, and linkage disequilibrium are influenced by scaling. We also examine the impact of simulated segment length and burn-in time on these metrics. Our results demonstrate that while computational efficiency improves with scaling, large scaling factors distort genetic diversity and dynamics between genetic variants, resulting in deviations from the intended model and empirical observations. Specifically, strongly scaled simulations may experience stronger negative selection on deleterious mutations, which amplifies background selection and purges linked mutations, leaving only rare strongly deleterious variants in the final population. We additionally show that a heuristic burn-in length of 10N generations is often insufficient for full coalescence in both models and alters expected linkage disequilibrium patterns. Finally, we provide considerations for conducting scaled simulations and offer potential strategies for the mitigation of scaling effects. For most nonmodel species simulations, we advocate for a bespoke scaling strategy drawn from these use cases.

摘要

缩放是群体遗传模拟中提高计算效率的常见做法。然而,很少有研究系统地研究缩放对多样性估计的影响,以及缩放结果与未缩放模拟和实证数据的可比性。我们研究了缩放对现代人类和黑腹果蝇这两个物种的影响。这些物种在种群大小和世代时间上有显著差异,因此人类需要适度缩放或不缩放,而果蝇则需要大幅缩放。我们确定了合并、运行时间、内存、多样性估计、位点频率谱和连锁不平衡如何受到缩放的影响。我们还研究了模拟片段长度和预烧时间对这些指标的影响。我们的结果表明,虽然计算效率随着缩放而提高,但大的缩放因子会扭曲遗传多样性和遗传变异之间的动态,导致与预期模型和实证观察结果产生偏差。具体而言,强缩放模拟可能会对有害突变产生更强的负选择,这会放大背景选择并清除连锁突变,最终种群中只留下罕见的强有害变异。我们还表明,10N代的启发式预烧长度通常不足以在两个模型中实现完全合并,并会改变预期的连锁不平衡模式。最后,我们提供了进行缩放模拟的注意事项,并提出了减轻缩放效应的潜在策略。对于大多数非模式物种模拟,我们提倡从这些用例中得出定制的缩放策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c7c/12147024/6fc9f2d7ccae/evaf097f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验