Suppr超能文献

群体遗传模拟:非标准自然选择模型的基准框架。

Population genetic simulation: Benchmarking frameworks for non-standard models of natural selection.

机构信息

School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.

Evolution of Cultural Diversity Initiative, The Australian National University, Canberra, Australian Capital Territory, Australia.

出版信息

Mol Ecol Resour. 2024 Apr;24(3):e13930. doi: 10.1111/1755-0998.13930. Epub 2024 Jan 21.

Abstract

Population genetic simulation has emerged as a common tool for investigating increasingly complex evolutionary and demographic models. Software capable of handling high-level model complexity has recently been developed, and the advancement of tree sequence recording now allows simulations to merge the efficiency and genealogical insight of coalescent simulations with the flexibility of forward simulations. However, frameworks utilizing these features have not yet been compared and benchmarked. Here, we evaluate various simulation workflows using the coalescent simulator msprime and the forward simulator SLiM, to assess resource efficiency and determine an optimal simulation framework. Three aspects were evaluated: (1) the burn-in, to establish an equilibrium level of neutral diversity in the population; (2) the forward simulation, in which temporally fluctuating selection is acting; and (3) the final computation of summary statistics. We provide typical memory and computation time requirements for each step. We find that the fastest framework, a combination of coalescent and forward simulation with tree sequence recording, increases simulation speed by over twenty times compared to classical forward simulations without tree sequence recording, although it does require six times more memory. Overall, using efficient simulation workflows can lead to a substantial improvement when modelling complex evolutionary scenarios-although the optimal framework ultimately depends on the available computational resources.

摘要

群体遗传模拟已成为研究日益复杂的进化和人口模型的常用工具。最近开发了能够处理高级模型复杂性的软件,并且树序列记录的进步现在允许模拟将合并模拟的效率和系统发育洞察力与正向模拟的灵活性。但是,利用这些功能的框架尚未进行比较和基准测试。在这里,我们使用合并模拟器 msprime 和正向模拟器 SLiM 评估了各种模拟工作流程,以评估资源效率并确定最佳模拟框架。评估了三个方面:(1)预热期,以在种群中建立中性多样性的平衡水平;(2)正向模拟,其中随时间波动的选择正在起作用;以及(3)总结统计数据的最终计算。我们提供了每个步骤的典型内存和计算时间要求。我们发现,最快的框架是使用树序列记录进行合并和正向模拟的组合,与没有树序列记录的经典正向模拟相比,它将模拟速度提高了二十多倍,尽管它确实需要多六倍的内存。总体而言,在对复杂的进化场景进行建模时,使用有效的模拟工作流程可以带来实质性的改进-尽管最佳框架最终取决于可用的计算资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9619/10932895/bb2e69ad7638/nihms-1958755-f0001.jpg

相似文献

3
Efficient pedigree recording for fast population genetics simulation.高效的家系记录,实现快速的群体遗传学模拟。
PLoS Comput Biol. 2018 Nov 1;14(11):e1006581. doi: 10.1371/journal.pcbi.1006581. eCollection 2018 Nov.
6
SLiM 2: Flexible, Interactive Forward Genetic Simulations.SLiM 2:灵活、交互式正向遗传模拟。
Mol Biol Evol. 2017 Jan;34(1):230-240. doi: 10.1093/molbev/msw211. Epub 2016 Oct 3.
7
An overview of population genetic data simulation.群体遗传数据模拟概述。
J Comput Biol. 2012 Jan;19(1):42-54. doi: 10.1089/cmb.2010.0188. Epub 2011 Dec 9.
9
Sequence-level population simulations over large genomic regions.大型基因组区域的序列水平群体模拟。
Genetics. 2007 Nov;177(3):1725-31. doi: 10.1534/genetics.106.069088. Epub 2007 Oct 18.

本文引用的文献

4
SLiM 4: Multispecies Eco-Evolutionary Modeling.SLiM 4:多物种生态进化建模。
Am Nat. 2023 May;201(5):E127-E139. doi: 10.1086/723601. Epub 2023 Mar 21.
5
Effects of Selection at Linked Sites on Patterns of Genetic Variability.连锁位点选择对遗传变异模式的影响。
Annu Rev Ecol Evol Syst. 2021 Nov;52:177-197. doi: 10.1146/annurev-ecolsys-010621-044528.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验