文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

POCALI:通过机器学习整合多组学数据对癌症长链非编码RNA进行预测与洞察

POCALI: Prediction and Insight on CAncer LncRNAs by Integrating Multi-Omics Data with Machine Learning.

作者信息

Rao Ziyan, Wu Chenyang, Liao Yunxi, Ye Chuan, Huang Shaodong, Zhao Dongyu

机构信息

Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.

State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.

出版信息

Small Methods. 2025 Jul;9(7):e2401987. doi: 10.1002/smtd.202401987. Epub 2025 May 23.


DOI:10.1002/smtd.202401987
PMID:40405764
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12285627/
Abstract

Long non-coding RNAs (lncRNAs) are receiving increasing attention as biomarkers for cancer diagnosis and therapy. Although there are many computational methods to identify cancer lncRNAs, they do not comprehensively integrate multi-omics features for predictions or systematically evaluate the contribution of each omics to the multifaceted landscape of cancer lncRNAs. In this study, an algorithm, POCALI, is developed to identify cancer lncRNAs by integrating 44 omics features across six categories. The contributions of different omics are explored to identifying cancer lncRNAs and, more specifically, how each feature contributes to a single prediction. The model is evaluated and benchmarked POCALI with existing methods. Finally, the cancer phenotype and genomics characteristics of the predicted novel cancer lncRNAs are validated. POCALI identifies secondary structure and gene expression-related features as strong predictors of cancer lncRNAs, and epigenomic features as moderate predictors. POCALI performed better than other methods, especially in terms of sensitivity, and predicted more candidates. Novel POCALI-predicted cancer lncRNAs have strong relationships with cancer phenotypes, similar to known cancer lncRNAs. Overall, this study facilitates the identification of previously undetected cancer lncRNAs and the comprehensive exploration of the multifaceted feature contributions to cancer lncRNA prediction.

摘要

长链非编码RNA(lncRNAs)作为癌症诊断和治疗的生物标志物正受到越来越多的关注。尽管有许多计算方法可用于识别癌症lncRNAs,但它们并未全面整合多组学特征进行预测,也未系统评估每组学对癌症lncRNAs多方面格局的贡献。在本研究中,开发了一种名为POCALI的算法,通过整合六个类别的44种组学特征来识别癌症lncRNAs。探索了不同组学在识别癌症lncRNAs中的贡献,更具体地说,是每种特征如何对单个预测做出贡献。使用现有方法对POCALI模型进行评估和基准测试。最后,对预测的新型癌症lncRNAs的癌症表型和基因组特征进行了验证。POCALI将二级结构和基因表达相关特征识别为癌症lncRNAs的强预测因子,将表观基因组特征识别为中等预测因子。POCALI的表现优于其他方法,尤其是在敏感性方面,并且预测了更多的候选物。与已知的癌症lncRNAs类似,POCALI新预测的癌症lncRNAs与癌症表型有很强的关系。总体而言,本研究有助于识别先前未检测到的癌症lncRNAs,并全面探索多方面特征对癌症lncRNA预测的贡献。

相似文献

[1]
POCALI: Prediction and Insight on CAncer LncRNAs by Integrating Multi-Omics Data with Machine Learning.

Small Methods. 2025-7

[2]
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.

J Cancer Res Clin Oncol. 2021-7

[3]
Short-Term Memory Impairment

2025-1

[4]
Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.

Sci Rep. 2025-7-4

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Long noncoding RNAs as novel predictors of survival in human cancer: a systematic review and meta-analysis.

Mol Cancer. 2016-6-28

[9]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[10]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

本文引用的文献

[1]
Transcriptome-scale RNA-targeting CRISPR screens reveal essential lncRNAs in human cells.

Cell. 2024-12-26

[2]
Transient loss of Polycomb components induces an epigenetic cancer fate.

Nature. 2024-5

[3]
Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx.

Nat Methods. 2024-4

[4]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[5]
COSMIC: a curated database of somatic variants and clinical data for cancer.

Nucleic Acids Res. 2024-1-5

[6]
Tumour mutations in long noncoding RNAs enhance cell fitness.

Nat Commun. 2023-6-8

[7]
Low RNA stability signifies increased post-transcriptional regulation of cell identity genes.

Nucleic Acids Res. 2023-7-7

[8]
A novel method to identify and characterize personalized functional driver lncRNAs in cancer samples.

Comput Struct Biotechnol J. 2023-3-24

[9]
LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling.

Oncogene. 2023-5

[10]
ncR2Met (lncR2metasta v2.0): An updated database for experimentally supported ncRNAs during cancer metastatic events.

Genomics. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索