Suppr超能文献

机器学习结合多组学技术以识别免疫相关长链非编码RNA特征作为预测乳腺癌预后的生物标志物。

Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.

作者信息

Liu Yuxing, Chen Jintao, Yang Daifeng, Liu Chenming, Tang Chunhui, Cai Shanshan, Huang Yingxuan

机构信息

Department of General surgery, Mingji Hospital, No. 71 Hexi Avenue, Jianye District, Nanjing, 210000, Jiangshu, China.

Fujian Changle District Hospital, Fuzhou, Fujian, China.

出版信息

Sci Rep. 2025 Jul 4;15(1):23863. doi: 10.1038/s41598-025-10186-9.

Abstract

This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transcriptomic and gene expression data from TCGA and GEO databases, 72 immune-related lncRNAs were identified through weighted gene co-expression network analysis (WGCNA) and ImmuLncRNA algorithms. The model was further optimized using 101 combinations of 10 machine learning approaches, ultimately constructing an immune-related lncRNA signature(IRLS) scoring system comprising nine key lncRNAs. Validated across 17 independent cohorts, the model demonstrated that high-risk patients had significantly shorter overall survival (OS) (P < 0.05), with predictive performance surpassing 95 published models (P < 0.05). Additionally, the IRLS score predicted responses to paclitaxel chemotherapy, and the low-risk group exhibited higher immune cell infiltration (P < 0.05), showing significant negative correlations with CD8A, PD-L1, tumor mutational burden (TMB), and neoantigen load (NAL). In immune checkpoint inhibitor (ICI) treatment cohorts, low IRLS scores were associated with improved response rates to atezolizumab. Our findings suggest that the IRLS model serves as a novel biomarker for prognostic stratification and personalized therapeutic decision-making in breast cancer.

摘要

本研究通过整合多组学数据和机器学习算法,开发了一种基于免疫相关长链非编码RNA(lncRNA)的预后特征,以预测乳腺癌患者的生存率和治疗反应。利用来自TCGA和GEO数据库的转录组和基因表达数据,通过加权基因共表达网络分析(WGCNA)和ImmuLncRNA算法鉴定出72个免疫相关lncRNA。该模型使用10种机器学习方法的101种组合进行进一步优化,最终构建了一个包含9个关键lncRNA的免疫相关lncRNA特征(IRLS)评分系统。在17个独立队列中进行验证,该模型表明高危患者的总生存期(OS)显著缩短(P < 0.05),其预测性能超过95个已发表的模型(P < 0.05)。此外,IRLS评分可预测对紫杉醇化疗的反应,低风险组表现出更高的免疫细胞浸润(P < 0.05),与CD8A、PD-L1、肿瘤突变负担(TMB)和新抗原负荷(NAL)呈显著负相关。在免疫检查点抑制剂(ICI)治疗队列中,低IRLS评分与阿特珠单抗的反应率提高相关。我们的研究结果表明,IRLS模型可作为乳腺癌预后分层和个性化治疗决策的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a57/12227569/9825c88788f2/41598_2025_10186_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验