Dagnaw Wasihun Menberu, Hailu Yohannes Mulugeta, Mohammed Ahmed M
Department of Chemistry, College of Natural Sciences, Haramaya University Dire Dawa P.O. Box 138 Ethiopia
Department of Chemical Engineering, National Taiwan University of Science and Technology Taipei Taiwan Republic of China.
RSC Adv. 2025 May 22;15(22):17241-17247. doi: 10.1039/d5ra01845e. eCollection 2025 May 21.
Palladium-catalyzed Suzuki-Miyaura Coupling (SMC) is a powerful strategy to construct C-C bonds; however, it suffers from the disadvantages of using expensive palladium catalysts and additives. Based on the experimental development of the base-free nickel catalyzed Suzuki-Miyaura coupling of acid fluorides (ArC(O)F) with diboron reagent, we carried out DFT calculations to gain insight into the reaction mechanisms. The coupling reaction proceeds four stages: (1) oxidative addition of the acid fluoride to the Ni(0) center to break the C-F bond, (2) transmetalation with diboron reagent, (3) carbonyl deinsertion reverse carbonyl migratory insertion, and (4) reductive elimination to afford the coupling product and regenerate the active catalyst. It was found that the competitive rotation of the Ni-B bond and Ni-C(aryl) bond of the intermediate generated from the oxidative addition of the acid fluoride to Ni(0) center (stage I) determines the chemoselectivity of the catalytic cycle, and carbonyl migratory insertion is the rate-determining step of the coupling. Our study reveals that the PhOMe moiety in TS8 induces greater steric hindrance and reduced electronic stabilization compared to BPin in TS5, resulting in increased geometric distortion, higher distortion energy, and a less favorable transition state with a higher activation barrier. Furthermore, our computational results indicate that transmetalation prefers a concerted mechanism. Detailed analyses reveals that the strong fluorophilicity of boron enables efficient, base-free transmetalation. This study could be helpful for the development of cheap catalysts for Suzuki-Miyaura cross-coupling reactions.
钯催化的铃木-宫浦偶联反应(SMC)是构建碳-碳键的有效策略;然而,该反应存在使用昂贵钯催化剂和添加剂的缺点。基于无碱镍催化酰氟(ArC(O)F)与双联硼试剂的铃木-宫浦偶联反应的实验进展,我们进行了密度泛函理论(DFT)计算以深入了解反应机理。该偶联反应分四个阶段进行:(1)酰氟向Ni(0)中心的氧化加成以断裂C-F键;(2)与双联硼试剂的转金属化反应;(3)羰基脱插入/逆羰基迁移插入反应;(4)还原消除反应以生成偶联产物并使活性催化剂再生。研究发现,酰氟向Ni(0)中心氧化加成(阶段I)生成的中间体中Ni-B键和Ni-C(芳基)键的竞争性旋转决定了催化循环的化学选择性,且羰基迁移插入是偶联反应的决速步骤。我们的研究表明,与TS5中的硼酸频哪醇酯(BPin)相比,TS8中的甲氧基苯基(PhOMe)部分诱导了更大的空间位阻并降低了电子稳定性,导致几何畸变增加、畸变能升高以及过渡态更不利且活化能垒更高。此外,我们的计算结果表明转金属化反应更倾向于协同机理。详细分析表明硼的强亲氟性使得无碱转金属化反应高效进行。该研究有助于开发用于铃木-宫浦交叉偶联反应的廉价催化剂。