Huang Xin, He Yu-Xuan, Wan Song
Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Front Cell Dev Biol. 2025 May 6;13:1590627. doi: 10.3389/fcell.2025.1590627. eCollection 2025.
DR represents a major cause of global vision loss; however, the genetic basis of functional homotopy,a critical neurobiological metric reflecting interhemispheric functional synchronization, remains largely unexplored. Emerging evidence suggests that DR patients exhibiting aberrant VMHC may potentially associate with distinct transcriptional profiles. These findings could provide novel mechanistic insights into the neuropathological substrates underlying DR-related visual and cognitive dysfunction.
Resting-state fMRI data from 46 DR patients and 43 HCs were analyzed to compute VMHC for assessing interhemispheric functional connectivity. Spatial transcriptomic-neuroimaging associations were examined using AHBA, revealing genes significantly correlated with VMHC alterations. Subsequent analyses included functional enrichment assessment and PPI network construction.
DR patients demonstrated significantly lower VMHC in bilateral LING, PoCG, and PreCG versus controls, indicating impaired interhemispheric connectivity in visual-sensorimotor networks. VMHC variations spatially correlated with 4,000 genes (2,000 positive/negative each), enriched in transcriptional regulation, mitochondrial function, synaptic activity (BP/CC/MF), and lipid metabolism/N-glycan biosynthesis (KEGG). PPI network identified hub genes (ACTB/MRPL9/MRPS6,positive; H4C6/NDUFAB1/H3C12,negative) regulating mitochondrial dynamics, cytoskeleton, and epigenetics.
This study represents the first integration of fMRI and transcriptomics to elucidate the genetic determinants underlying VMHC disruption in DR. The findings demonstrate that impaired interhemispheric connectivity in DR involves complex interactions among genes regulating neurovascular, metabolic, and neurodegenerative pathways. These results significantly advance the understanding of neurological manifestations in DR and identify potential therapeutic targets for clinical intervention.
糖尿病视网膜病变(DR)是全球视力丧失的主要原因;然而,功能同伦的遗传基础,这一反映半球间功能同步的关键神经生物学指标,在很大程度上仍未得到探索。新出现的证据表明,表现出异常体素镜像同伦连接性(VMHC)的DR患者可能与不同的转录谱相关。这些发现可能为DR相关视觉和认知功能障碍的神经病理学基础提供新的机制见解。
分析了46例DR患者和43例健康对照(HC)的静息态功能磁共振成像(fMRI)数据以计算VMHC,用于评估半球间功能连接性。使用艾伦人类大脑图谱(AHBA)检查空间转录组学与神经影像学的关联,揭示与VMHC改变显著相关的基因。后续分析包括功能富集评估和蛋白质-蛋白质相互作用(PPI)网络构建。
与对照组相比,DR患者在双侧顶叶岛盖部、中央后回和中央前回的VMHC显著降低,表明视觉-感觉运动网络中的半球间连接受损。VMHC变化与4000个基因在空间上相关(各2000个正向/负向),这些基因富集于转录调控、线粒体功能、突触活动(生物学过程/细胞组分/分子功能)以及脂质代谢/N-聚糖生物合成(京都基因与基因组百科全书)。PPI网络确定了调节线粒体动力学、细胞骨架和表观遗传学的枢纽基因(肌动蛋白/线粒体核糖体蛋白L9/线粒体核糖体蛋白S6,正向;组蛋白H4C6/线粒体膜间隙蛋白AB1/组蛋白H3C12,负向)。
本研究首次将fMRI和转录组学整合起来,以阐明DR中VMHC破坏的遗传决定因素。研究结果表明,DR中半球间连接受损涉及调节神经血管、代谢和神经退行性变途径的基因之间的复杂相互作用。这些结果显著推进了对DR神经学表现的理解,并确定了临床干预的潜在治疗靶点。