Suppr超能文献

加权重复测量相关系数:一种用于处理重复测量缺失数据的新相关系数。

Weighted Repeated Measures Correlation Coefficient: A New Correlation Coefficient for Handling Missing Data With Repeated Measures.

作者信息

Kondo Masahiro, Nagashima Kengo, Isono Shiroh, Sato Yasunori

机构信息

Graduate School of Health Management, Keio University, Kanagawa, Japan.

Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan.

出版信息

Stat Med. 2025 May;44(10-12):e70046. doi: 10.1002/sim.70046.

Abstract

The relationship between two variables measured multiple times per individual has often been evaluated in clinical studies. These data are not independent; therefore, the Pearson correlation coefficient is inappropriate, and some correlation coefficients for these data have been proposed. However, in the presence of missing data, the existing methods can be biased. In this article, we proposed a weighted repeated measures correlation coefficient that provides an accurate estimate, even with missing data, in a study in which participants ideally have the same number of measurements. We also provided a bootstrap confidence interval for the weighted repeated measures correlation coefficients. We evaluated the performance of the proposed and existing methods (i.e., simple Pearson correlation coefficient, the Pearson correlation coefficient for average, average of the Pearson correlation coefficient, correlation coefficient based on analysis of covariance, and correlation coefficient based on the linear mixed-effects model) through simulations and application to actual data. In numerical evaluations using simulations, the proposed method consistently outperformed existing methods. We recommend using a weighted repeated measures correlation coefficient to handle missing values in multiple-measurement data.

摘要

在临床研究中,常常会评估个体多次测量的两个变量之间的关系。这些数据并非相互独立;因此,皮尔逊相关系数并不适用,针对这些数据已经提出了一些相关系数。然而,在存在缺失数据的情况下,现有方法可能会产生偏差。在本文中,我们提出了一种加权重复测量相关系数,即使在存在缺失数据的情况下,在参与者理想情况下具有相同测量次数的研究中,它也能提供准确的估计。我们还为加权重复测量相关系数提供了一个自助置信区间。我们通过模拟以及对实际数据的应用,评估了所提出的方法和现有方法(即简单皮尔逊相关系数、平均皮尔逊相关系数、皮尔逊相关系数的平均值、基于协方差分析的相关系数以及基于线性混合效应模型的相关系数)的性能。在使用模拟进行的数值评估中,所提出的方法始终优于现有方法。我们建议使用加权重复测量相关系数来处理多次测量数据中的缺失值。

相似文献

3
Correlation Coefficients for a Study with Repeated Measures.具有重复测量的研究的相关系数。
Comput Math Methods Med. 2020 Mar 26;2020:7398324. doi: 10.1155/2020/7398324. eCollection 2020.
8
A Comparative Investigation of Confidence Intervals for IndependentVariables in Linear Regression.线性回归中自变量置信区间的比较研究
Multivariate Behav Res. 2016 Mar-Jun;51(2-3):139-53. doi: 10.1080/00273171.2015.1121372. Epub 2016 Mar 25.
9
Evaluation of approaches for multiple imputation of three-level data.三水平数据的多重插补方法评价。
BMC Med Res Methodol. 2020 Aug 12;20(1):207. doi: 10.1186/s12874-020-01079-8.

本文引用的文献

4
Evaluating the utility of daily speech assessments for monitoring depression symptoms.评估日常言语评估在监测抑郁症状方面的效用。
Digit Health. 2023 Jun 12;9:20552076231180523. doi: 10.1177/20552076231180523. eCollection 2023 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验