Suppr超能文献

通过系统策略解码中药复方模型:来自靶点信息和中医临床理论的见解

Decoding herbal combination models through systematic strategies: insights from target information and traditional Chinese medicine clinical theory.

作者信息

Wang Mingjuan, Chen Xuetong, Liu Mingxing, Luo Huiying, Zhang Shuangshuang, Guo Jie, Wang Jinghui, Zhou Li, Zhang Na, Li Hongyan, Wang Chao, Li Liang, Wang Zhenzhong, Wang Haiqing, Guo Zihu, Li Yan, Wang Yonghua

机构信息

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an 710069, Shaanxi, China.

Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, North 4th Road, Shihezi 832000, Xinjiang, China.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf229.

Abstract

Traditional Chinese medicine (TCM) utilizes intricate herbal formulations that exemplify the principles of compatibility and synergy. However, the rapid proliferation of herbal data has resulted in redundant information, complicating the understanding of their potential mechanisms. To address this issue, we first established a comprehensive database that encompasses 992 herbs, 18 681 molecules, and 2168 targets. Consequently, we implemented a multi-network strategy based on a core information screening method to elucidate the highly intertwined relationships among the targets of various herbs and to refine herbal target information. Within a non-redundant network framework, separation and overlap analysis demonstrated that the networking of herbs preserves essential clinical information, including their properties, meridians, and therapeutic classifications. Furthermore, two notable trends emerged from the statistical analyses of classical TCM formulas: the separation of herbs and the overlap between herbs and diseases. This phenomenon is termed the herbal combination model (HCM), validated through statistical analyses of two representative case studies: the common cold and rheumatoid arthritis. Additionally, in vivo and in vitro experiments with the new formula YanChuanQin (YanHuSuo-Corydalis Rhizoma, ChuanWu-Aconiti Radix, and QinJiao-Gentianae Macrophyllae Radix) for acute gouty arthritis further support the HCM. Overall, this computational method provides a systematic network strategy for exploring herbal combinations in complex and poorly understood diseases from a non-redundant perspective.

摘要

传统中医(TCM)使用复杂的草药配方,这些配方体现了配伍和协同的原则。然而,草药数据的迅速增长导致了信息冗余,使得理解其潜在机制变得复杂。为了解决这个问题,我们首先建立了一个综合数据库,其中包含992种草药、18681种分子和2168个靶点。因此,我们基于核心信息筛选方法实施了一种多网络策略,以阐明各种草药靶点之间高度交织的关系,并优化草药靶点信息。在一个无冗余的网络框架内,分离和重叠分析表明,草药的网络化保留了重要的临床信息,包括它们的特性、经络和治疗分类。此外,对经典中药方剂的统计分析出现了两个显著趋势:草药的分离以及草药与疾病之间的重叠。这种现象被称为草药组合模型(HCM),通过对两个代表性案例研究(普通感冒和类风湿性关节炎)的统计分析得到了验证。此外,针对急性痛风性关节炎的新方剂延川芩(延胡索-醋延胡索、川乌-制川乌、秦艽-秦艽)进行的体内和体外实验进一步支持了HCM。总体而言,这种计算方法提供了一种系统的网络策略,用于从无冗余的角度探索复杂且了解不足的疾病中的草药组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0400/12100621/a0b80b8b6275/bbaf229f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验