Suppr超能文献

针对委内瑞拉马脑炎病毒的单域抗体的生成式深度学习设计

Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus.

作者信息

Liu Jinny L, Bayacal Gabrielle C, Alvarez Jerome Anthony E, Shriver-Lake Lisa C, Goldman Ellen R, Dean Scott N

机构信息

Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA.

Naval Research Enterprise Internship Program, US Naval Research Laboratory, Washington, DC 20375, USA.

出版信息

Antibodies (Basel). 2025 May 14;14(2):41. doi: 10.3390/antib14020041.

Abstract

BACKGROUND/OBJECTIVES: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic epitopes.

METHODS

This research describes the development and preliminary evaluation of VEEV-binding sdAbs generated using a generative artificial intelligence (AI) platform. Using a dataset of known alphavirus-binding sdAbs, the AI model produced sequences with predicted affinity for the E2 glycoprotein of VEEV. These candidate sdAbs were expressed in a bacterial periplasmic system and purified for initial assessment.

RESULTS

Enzyme-linked immunosorbent assays (ELISAs) indicated binding activity of the sdAbs to VEEV antigens. In vitro neutralization tests suggested inhibition of VEEV infection in cultured cells for some of the candidates.

CONCLUSIONS

This study demonstrates how generative AI can expedite antiviral therapeutic development and establishes a framework for quick responses to emerging viral threats when extensive example databases are unavailable. Additional refinement and validation of AI-generated sdAbs could establish effective VEEV therapeutics.

摘要

背景/目的:委内瑞拉马脑炎病毒(VEEV)构成重大生物威胁,目前尚无美国食品药品监督管理局(FDA)批准的疫苗,这凸显了寻求替代治疗策略的必要性。单域抗体(sdAbs)因其体积小且能够识别隐蔽表位,成为传统抗体的潜在替代品。

方法

本研究描述了使用生成式人工智能(AI)平台产生的与VEEV结合的sdAbs的开发及初步评估。利用已知的甲病毒结合sdAbs数据集,AI模型生成了对VEEV的E2糖蛋白具有预测亲和力的序列。这些候选sdAbs在细菌周质系统中表达并纯化以进行初步评估。

结果

酶联免疫吸附测定(ELISA)表明sdAbs与VEEV抗原具有结合活性。体外中和试验表明,部分候选sdAbs可抑制培养细胞中的VEEV感染。

结论

本研究证明了生成式AI如何加速抗病毒治疗药物的开发,并建立了在缺乏大量示例数据库时对新出现的病毒威胁做出快速反应的框架。对AI生成的sdAbs进行进一步优化和验证,有望开发出有效的VEEV治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad52/12101358/a33516dae959/antibodies-14-00041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验