Liu Jinny L, Bayacal Gabrielle C, Alvarez Jerome Anthony E, Shriver-Lake Lisa C, Goldman Ellen R, Dean Scott N
Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA.
Naval Research Enterprise Internship Program, US Naval Research Laboratory, Washington, DC 20375, USA.
Antibodies (Basel). 2025 May 14;14(2):41. doi: 10.3390/antib14020041.
BACKGROUND/OBJECTIVES: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic epitopes.
This research describes the development and preliminary evaluation of VEEV-binding sdAbs generated using a generative artificial intelligence (AI) platform. Using a dataset of known alphavirus-binding sdAbs, the AI model produced sequences with predicted affinity for the E2 glycoprotein of VEEV. These candidate sdAbs were expressed in a bacterial periplasmic system and purified for initial assessment.
Enzyme-linked immunosorbent assays (ELISAs) indicated binding activity of the sdAbs to VEEV antigens. In vitro neutralization tests suggested inhibition of VEEV infection in cultured cells for some of the candidates.
This study demonstrates how generative AI can expedite antiviral therapeutic development and establishes a framework for quick responses to emerging viral threats when extensive example databases are unavailable. Additional refinement and validation of AI-generated sdAbs could establish effective VEEV therapeutics.
背景/目的:委内瑞拉马脑炎病毒(VEEV)构成重大生物威胁,目前尚无美国食品药品监督管理局(FDA)批准的疫苗,这凸显了寻求替代治疗策略的必要性。单域抗体(sdAbs)因其体积小且能够识别隐蔽表位,成为传统抗体的潜在替代品。
本研究描述了使用生成式人工智能(AI)平台产生的与VEEV结合的sdAbs的开发及初步评估。利用已知的甲病毒结合sdAbs数据集,AI模型生成了对VEEV的E2糖蛋白具有预测亲和力的序列。这些候选sdAbs在细菌周质系统中表达并纯化以进行初步评估。
酶联免疫吸附测定(ELISA)表明sdAbs与VEEV抗原具有结合活性。体外中和试验表明,部分候选sdAbs可抑制培养细胞中的VEEV感染。
本研究证明了生成式AI如何加速抗病毒治疗药物的开发,并建立了在缺乏大量示例数据库时对新出现的病毒威胁做出快速反应的框架。对AI生成的sdAbs进行进一步优化和验证,有望开发出有效的VEEV治疗药物。