Nalmpatian Asmik, Heumann Christian, Alkaya Levent, Jackson William
Department of Statistics, LMU Munich, Munich, Bavaria, Germany.
Independent Researcher, Munich, Bavaria, Germany.
PLoS One. 2025 May 23;20(5):e0313378. doi: 10.1371/journal.pone.0313378. eCollection 2025.
This study introduces a transfer learning framework to address data scarcity in mortality risk prediction for the UK, where local mortality data is unavailable. By leveraging a pretrained model built from data across eight countries (excluding the UK) and incorporating synthetic data from the countries most similar to the UK, our approach extends beyond national boundaries. This framework reduces reliance on local datasets while maintaining strong predictive performance. We evaluate the model using the Continuous Mortality Investigation (CMI) dataset and a Drift model to address discrepancies arising from local demographic differences. Our research bridges machine learning and actuarial science, enhancing mortality risk prediction and pricing strategies, particularly in data-poor settings.
本研究引入了一种迁移学习框架,以解决英国死亡率风险预测中数据稀缺的问题,因为英国本地的死亡率数据无法获取。通过利用基于八个国家(不包括英国)的数据构建的预训练模型,并纳入与英国最相似国家的合成数据,我们的方法超越了国界。该框架在保持强大预测性能的同时,减少了对本地数据集的依赖。我们使用连续死亡率调查(CMI)数据集和漂移模型评估该模型,以解决因当地人口差异而产生的差异。我们的研究将机器学习与精算科学联系起来,改进了死亡率风险预测和定价策略,特别是在数据匮乏的环境中。