Bouvier Jacques W, Kelly Steven
Department of Biology, University of Oxford, Oxford, UK.
Plant Biotechnol J. 2025 Aug;23(8):3177-3194. doi: 10.1111/pbi.70130. Epub 2025 May 23.
Stomata are epidermal pores that control the exchange of gaseous CO and HO between plants and their environment. Modulating stomatal density can alter this exchange and thus presents a viable target for engineering improved crop productivity and climate resilience. Here, we show that stomatal density in Arabidopsis thaliana can be decreased by the expression of a water-forming NAD(P)H oxidase targeted to stomatal precursor cells. We demonstrate that this reduction in stomatal density occurs irrespective of whether the expressed enzyme is localized to the cytosol, chloroplast stroma or chloroplast intermembrane space of these cells. We also reveal that this decrease in stomatal density occurs in the absence of any measurable impact on the efficiency and thermal sensitivity of photosynthesis, or on stomatal dynamics. Consequently, overexpression plants exhibit a higher intrinsic water-use efficiency due to an increase in CO fixed per unit water transpired. Finally, we demonstrate that this enhanced water-use efficiency translates to an improvement in vegetative growth and biomass accumulation under water-deficit conditions. Together, these results thus provide a novel approach for enhancing plant productivity through metabolic engineering of stomatal density.
气孔是植物表皮上的小孔,控制着植物与其环境之间气态二氧化碳和水的交换。调节气孔密度可以改变这种交换,因此是通过基因工程提高作物产量和气候适应能力的一个可行目标。在这里,我们表明,通过在气孔前体细胞中表达一种生成水的NAD(P)H氧化酶,可以降低拟南芥的气孔密度。我们证明,无论表达的酶定位于这些细胞的细胞质、叶绿体基质还是叶绿体膜间隙,气孔密度都会降低。我们还发现,在对光合作用效率和热敏感性或气孔动态没有任何可测量影响的情况下,气孔密度会降低。因此,过表达植株由于单位水分蒸腾所固定的二氧化碳增加,表现出更高的内在水分利用效率。最后,我们证明,这种提高的水分利用效率转化为水分亏缺条件下营养生长和生物量积累的改善。总之,这些结果为通过气孔密度的代谢工程提高植物生产力提供了一种新方法。